The ammonia gas, having a lower molecular weight than the hydrogen chloride, will diffuse faster and travel a greater length of the tube. Consequently, the white ring of ammonium chloride will form much closer to hydrochloric acid end of the tube. Which in conclusion your answer will be D :)
Answer:
Explanation:
Molar mass of As2S3= {75(2) + 32(3)}
= 150 + 96 = 246g/mol
Amount = 3.25mole
And
Amount = mass/ molar mass
mass = amount × molar mass
Mass = 3.25 × 246
mass = 799.5g
Answer:
24 atm.
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 240 L
Initial pressure (P₁) = 2 atm
Final volume (V₂) = 20 L
Temperature = constant
Final pressure (P₂) =?
The final pressure required, can be obtained by using the Boyle's law equation as shown below:
P₁V₁ = P₂V₂
2 × 240 = P₂ × 20
480 = P₂ × 20
Divide both side by 20
P₂ = 480 / 20
P₂ = 24 atm
Thus, the final pressure required is 24 atm.
Answer:
260.34g
Explanation:
First, you need to know what angelic acid is comprised of. It is written as C₅H₈O₂.
In order to solve for the mass of 2.6 moles of angelic acid, you need the mass of 1 mole of angelic acid. This can be found by adding the masses from the periodic table, like shown below:
5 carbon atoms = (5)(12.01g) = 60.05g
8 hydrogen atoms = (8)(1.01) = 8.08g
2 oxygen atoms = (2)(16) = 32g
angelic acid = 60.05 + 8.08 + 32 = 100.13g
Then, set up a basic stoichiometric equation and solve. The units should cancel out.
