1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8_murik_8 [283]
3 years ago
6

An atom of the element ____________has an average atomic mass of about 16 amu. A) oxygen B) sulfur C) nitrogen D) no elements ha

ve that mass
Physics
1 answer:
DIA [1.3K]3 years ago
3 0

I think its oxygen because It's  atomic mass is 15.999.

You might be interested in
Using your Periodic Table, which element below has the smallest atomic radius? A.) Sodium, B.) Chlorine, C.) Phosphorus, D.) Iro
egoroff_w [7]

Explanation:

Chlorine is the smallest atomic radius

6 0
3 years ago
Read 2 more answers
Illustrates an Atwood's machine. Let the masses of blocks A and B be 7.00 kg and 3.00 kg , respectively, the moment of inertia o
Harman [31]

Answer:  

A) 1.55  

B) 1.55

C) 12.92

D) 34.08

E)  57.82

Explanation:  

The free body diagram attached, R is the radius of the wheel  

Block B is lighter than block A so block A will move upward while A downward with the same acceleration. Since no snipping will occur, the wheel rotates in clockwise direction.  

At the centre of the whee, torque due to B is given by  

{\tau _2} = - {T_{\rm{B}}}R  

Similarly, torque due to A is given by  

{\tau _1} = {T_{\rm{A}}}R  

The sum of torque at the pivot is given by  

\tau = {\tau _1} + {\tau _2}  

Replacing {\tau _1} and {\tau _2} by {T_{\rm{A}}}R and - {T_{\rm{B}}}R respectively yields  

\begin{array}{c}\\\tau = {T_{\rm{A}}}R - {T_{\rm{B}}}R\\\\ = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R\\\end{array}  

Substituting I\alpha for \tau in the equation \tau = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

I\alpha=\left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

The angular acceleration of the wheel is given by \alpha = \frac{a}{R}  

where a is the linear acceleration  

Substituting \frac{a}{R} for \alpha into equation  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right we obtain  

\frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

Net force on block A is  

{F_{\rm{A}}} = {m_{\rm{A}}}g - {T_{\rm{A}}}  

Net force on block B is  

{F_{\rm{B}}} = {T_{\rm{B}}} - {m_{\rm{B}}}g  

Where g is acceleration due to gravity  

Substituting {m_{\rm{B}}}a and {m_{\rm{A}}}a for {F_{\rm{B}}} and {F_{\rm{A}}} respectively into equation \frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right and making a the subject we obtain  

\begin{array}{c}\\{m_{\rm{A}}}g - {m_{\rm{A}}}a - \left( {{m_{\rm{B}}}g + {m_{\rm{B}}}a} \right) = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g - \left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right)a = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)a = \left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g\\\\a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}\\\end{array}  

Since {m_{\rm{B}}} = 3kg and {m_{\rm{B}}} = 7kg  

g=9.81 and R=0.12m, I=0.22{\rm{ kg}} \cdot {{\rm{m}}^2}  

Substituting these we obtain  

a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}  

\begin{array}{c}\\a = \frac{{\left( {7{\rm{ kg}} - 3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2}} \right)}}{{\left( {7{\rm{ kg}} + 3{\rm{ kg}} + \frac{{0.22{\rm{ kg/}}{{\rm{m}}^2}}}{{{{\left( {0.120{\rm{ m}}} \right)}^2}}}} \right)}}\\\\ = 1.55235{\rm{ m/}}{{\rm{s}}^2}\\\end{array}

Therefore, the linear acceleration of block A is 1.55 {\rm{ m/}}{{\rm{s}}^2}

(B)

For block B

{a_{\rm{B}}} = {a_{\rm{A}}}

Therefore, the acceleration of both blocks A and B are same

1.55 {\rm{ m/}}{{\rm{s}}^2}

(C)

The angular acceleration is \alpha = \frac{a}{R}

\begin{array}{c}\\\alpha = \frac{{1.55{\rm{ m/}}{{\rm{s}}^2}}}{{0.120{\rm{ m}}}}\\\\ = 12.92{\rm{ rad/}}{{\rm{s}}^2}\\\end{array}

(D)

Tension on left side of cord is calculated using

\begin{array}{c}\\{T_{\rm{B}}} = {m_{\rm{B}}}g + {m_{\rm{B}}}a\\\\ = {m_{\rm{B}}}\left( {g + a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{B}}} = \left( {3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} + 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 34.08{\rm{ N}}\\\end{array}

(E)

Tension on right side of cord is calculated using

\begin{array}{c}\\{T_{\rm{A}}} = {m_{\rm{A}}}g - {m_{\rm{A}}}a\\\\ = {m_{\rm{A}}}\left( {g - a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{A}}} = \left( {7{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} – 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 57.82{\rm{ N}}\\\end{array}

6 0
3 years ago
An automobile having a mass of 1,000 kg is driven into a brick wall in a safety test. The bumper behaves like a spring with cons
vlada-n [284]

Answer:

v=2.02\frac{m}{s}

Explanation:

Assuming no energy lost, according to the law of conservation of energy, the kinetic energy of the automobile becomes potential energy after the crash:

K=U\\\frac{mv^2}{2}=\frac{kx^2}{2}

Here m is the automobile's mass, v is the speed of the car before impact, k is the "bumper" constant and x is the compression of the bumper due to the collision. Solving for v:

v=x\sqrt\frac{k}{m}\\v=2.63*10^{-2}m\sqrt{\frac{5.9*10^6\frac{N}{m}}{10^3kg}}\\v=2.02\frac{m}{s}

8 0
3 years ago
How much voltage is in the primary coil if there are 3200 windings in the
Lesechka [4]

Answer:

Voltage in primary coil is 3.91 V

Explanation:

For transformer we know that the working principle is given as

\frac{V_1}{V_2} = \frac{N_1}{N_2}

here we know that

V_1 [tex] = voltage in primary coil[tex]V_2 = 25 V

N_1 = 500

N_2 = 3200

Now we have

\frac{V_1}{25} = \frac{500}{3200}

V_1 = 3.91 V

8 0
3 years ago
2. Conner flips a coin up in the air (to determine if he or his sister needs to do the dishes) at an upward velocity of 4.00 m/s
Lana71 [14]

Answer:

5.6

Explanation:

Not so sure

4 0
2 years ago
Other questions:
  • The cycle of day and night is a result of Earth’s spinning on its axis, which is Earth’s .
    6·1 answer
  • Using a cathode ray tube, Thomson confirmed that
    10·2 answers
  • What are some types of landforms on Earth’s surface?<br><br><br><br> PLS ANSWER QUICK 11 POINTS
    7·2 answers
  • Gases are more prone to expansion and contraction than liquid . The biggest change in the volume in your thermometer was probabl
    14·1 answer
  • Calculate the total displacement if a toy car starts at 0 moves 5cm to the left then 8cm to the right then 3 cm to the left
    8·1 answer
  • The angle of reflection is the angle between the normal line and the___?
    13·1 answer
  • A car with a mass of 860 kg sits at the top of a 32 meter high hill. Describe the transformations between potential and kinetic
    11·1 answer
  • What happens to jetstream’s as they get closer to the equator
    11·2 answers
  • Find the vector parallel to the resultant of the vector A=i +4j-2k and B=3i-5j+k​
    15·2 answers
  • How do gases respond to changes in pressure and temperature?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!