Position of element in periodic table is depend on the electronic configuration of element.
Element with 62 electrons has following electronic configuration:
<span>1s2 2s2 </span>2p6 <span>3s2 </span>3p6 4s2 3d10 4p6 <span>5s2 </span>4d10 5p6 4f6 <span>6s<span>2
</span></span>
From above electronic configuration, it can be seen that highest value of principal quantum number, where electron is present, is 6. Hence, element belongs to 6th period.
Further, last electron has entered f-orbital, hence it is a f-block element. Position of f-block element is the bottom of periodic table.
Further, there are 6 electrons in f-orbital. Hence, it is the 6th f-block element in 6th period of periodic table.
-log (1×10^-12) is how you calculate the pOH which in this case is 12
It’s 6.022x10^23. This is how many atoms of any element are in one mole of that element. No matter what it is, there are always 6.022x10^23 atoms per mole. So divide 1.81x10^24 by 6.022x10^23 to get approximately 3 moles of sulfur.
Answer:
0.8 mL of protein solution, 9.2 mL of water
Explanation:
The dilution equation can be used to relate the concentration C₁ and volume V₁ of the stock/undiluted solution to the concentration C₂ and volume V₂ of the diluted solution:
C₁V₁ = C₂V₂
We would like to calculate the value for V₁, the volume of the inital solution that we need to dilute to make the required solution.
V₁ = (C₂V₂) / C₁ = (2mg/mL x 10mL) / (25 mg/mL) = 0.8 mL
Thus, a volume of 0.8 mL of protein solution should be diluted with enough water to bring the total volume to 10 mL. The amount of water needed is:
(10 mL - 0.8 mL) = 9.2 mL