1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVEN [57.7K]
3 years ago
7

A 30-kg child rides a 20-kg bicycle together,the child and the bicycle have a momentum of 110 kg•m/s. What is the velocity of th

e boy and the bicycle
Physics
1 answer:
Korolek [52]3 years ago
3 0
What are the options for this?
You might be interested in
The largest number of neurons within the brain and spinal cord are responsible for the central nervous system's complex internal
GREYUIT [131]

Answer: Interneurons.

These interneurons transmit impulses to other neurons and thus form a part of the reflux arc.


3 0
3 years ago
A toy train is pushed forward and released at Xi = 4.0 m with a speed of 2.5 m/s. It rolls at a steady speed for 2.0 s, then one
Fittoniya [83]
I don't think that 4m has anything to do with the problem. anyway. here. A___________________B_______C where A is the point that the train was released. B is where the wheel started to stick C is where it stopped From A to B, v=2.5m/s, it takes 2s to go A to B so t=2 AB= v*t = 2.5 * 2 = 5m The train comes to a stop 7.7 m from the point at which it was released so AC=7.7m then BC= AC-AB = 7.7-5 = 2.7m now consider BC v^2=u^2+2as where u is initial speed, in this case is 2.5m/s v is final speed, train stop at C so final speed=0, so v=0 a is acceleration s is displacement, which is BC=2.7m substitute all the number into equation, we have 0^2 = 2.5^2 + 2*a*2.7 0 = 6.25 + 5.4a a = -6.25/5.4 = -1.157 so acceleration is -1.157m/(s^2)
8 0
3 years ago
Read 2 more answers
Each driver has mass 79.0 kg. Including the masses of the drivers, the total masses of the vehicles are 800 kg for the car and 4
Mademuasel [1]

Answer:

Force exerted on the car driver by the seatbelt = 8139.4 N = 8.14 kN

Force exerted on the truck driver by the seatbelt = 1628.2 N = 1.63 kN

It is evident that the driver of the smaller vehicle has it worse. The car driver is in way more danger in this perfectly inelastic head-on collision with a bigger vehicle (the truck).

Explanation:

First of, we calculate the velocity of the vehicles after collision using the law of conservation of Momentum

Momentum before collision = Momentum after collision

Since the collision of the two vehicles was described as a head-on collision, for the sake of consistent convention, we will take the direction of the velocity of the bigger vehicle (the truck) as the positive direction and the direction of the car's velocity automatically is the negative direction.

Velocity of the truck before collision = 6.80 m/s

Velocity of the car before collision = -6.80 m/s

Let the velocity of the inelastic unit of vehicles after collision be v

Momentum before collision = (4000)(6.80) + (800)(-6.80) = 27200 - 5440 = 21,760 kgm/s

Momentum after collision = (4000 + 800)(v) = (4800v) kgm/s

Momentum before collision = Momentum after collision

21760 = 4800v

v = (21760/4800)

v = 4.533 m/s (in the direction of the big vehicle (the truck)

So, we then apply Newton's second law of motion which explains that the magnitude change in momentum is equal to the magnitude of impulse.

|Impulse| = |Change in momentum|

But Impulse = (Force exerted on each driver by the seatbelt) × (collision time) = (F×t)

Change in momentum = (Momentum after collision) - (Momentum before collision)

So, for the driver of the truck

Initial velocity = 6.80 m/s (the driver moves with the velocity of the truck)

Final velocity = 4.533 m/s

Change in momentum of the truck driver = (79)(6.80) - (79)(4.533) = 179.1 kgm/s

(F×t) = 179.1

F × 0.110 = 179.1

F = (179.1/0.11)

F = 1628.2 N = 1.63 kN

So, for the driver of the car

Initial velocity = -6.80 m/s (the driver moves with the velocity of the car)

Final velocity = 4.533 m/s

Change in momentum of the car driver = (79)(-6.80) - (79)(4.533) = -895.3 kgm/s

(F×t) = |-895.3|

F × 0.110 = 895.3

F = (895.3/0.11)

F = 8139.4 N = 8.14 kN

Hope this Helps!!!

3 0
3 years ago
Pleaseeee help!!!!!!!!
kenny6666 [7]
Most likely B. Will erode, if not it will grow weeds
6 0
3 years ago
What equation would you use to calculate the ideal mechanical advantage of a wheel and axle? This is Science not Physics
Lyrx [107]
<span> you divide the radius of the </span>wheel<span> by the radius of the </span>axle<span>.</span>
3 0
3 years ago
Other questions:
  • Select the correct answer.
    5·2 answers
  • Kinetic energy is
    11·1 answer
  • Someone please help me
    13·1 answer
  • What is the net force on an object when you combine a force of 10n north with a force of 5n south?
    6·1 answer
  • 1 Which statement BEST describes how a golf club does "work" on a golf ball? (A) When the club hits the ball the club transfers
    14·1 answer
  • An object with a mass of 70 kilograms is supported at a height of 8 meters above the ground, what's the potential energy of the
    13·1 answer
  • The potential energy of a pair of hydrogen atoms separated by a large distance .x is given by L/(x) = —C6/x6, where C6 is a posi
    15·1 answer
  • Two horizontal forces act on a 1.4 kg chopping block that can slide over a friction-less kitchen counter, which lies in an xy pl
    13·1 answer
  • a microwave operates at a frequency of 2400 MHZ. the height of the oven cavity is 25 cm and the base measures 30 cm by 30 cm. as
    5·1 answer
  • Suppose the block is released from rest with the spring compressed 5.00 cm. The mass of the block is 1.70 kg and the force const
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!