1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
statuscvo [17]
3 years ago
5

ladders are not required to be inspected for visible defects prior to the first use of each work shift,and after any occuurrence

that could affect their safety.. True or False?​
Engineering
1 answer:
zaharov [31]3 years ago
4 0

Answer:

The answer is False.

Explanation:

When it comes to occupational safety,<em> it is very important for ladders to be inspected by a qualified person before each use.</em> This is because ladders undergo conditions that impact their integrity while being in use. The inspection is also essential in order for the ladder to be timely replaced.

<u><em>Ladder accidents or ladder-related injuries happen every year.</em></u> Around 700 occupational deaths due to elevated fall from a ladder accounts for 15% of all occupational deaths. Misuse or damage ladders are often the reasons for this.

Thus, the answer in the above statement is False because ladders are required to be inspected for visible defects prior to the first use of each work shift and after any occurrence that could affect their safety.

You might be interested in
In a much smaller model of the Gizmo apparatus, a 5 kg mass drops 86 mm (0.086 m) and raises the temperature of 1 gram of water
Orlov [11]

Answer:

The amount of energy transferred to the water is 4.214 J

Explanation:

The given parameters are;

The mass of the object that drops = 5 kg

The height from which it drops = 86 mm (0.086 m)

The potential energy P.E. is given by the following formula

P.E = m·g·h

Where;

m = The mass of the object = 5 kg

g = The acceleration de to gravity = 9.8 m/s²

h = The height from which the object is dropped = 0.086 m

Therefore;

P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J

Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;

The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.

6 0
2 years ago
An automotive fuel has a molar composition of 85% ethanol (C2H5OH) and 15% octane (C8H18). For complete combustion in air, deter
slava [35]

Answer:

a) 1

b) 1813.96 MJ/kmol

c) 32.43 MJ/kg ,  1980.39 MJ/Kmol

Explanation:

molar mass of  ethanol (C2H5OH) = 46 g/mol

molar mass of   octane (C8H18) = 114 g/mol

therefore the moles of ethanol and octane

ethanol =  0.85 / 46

octane = 0.15 / 114

a) determine the molar air-fuel ratio and air-fuel ratio by mass

attached below

mass of air / mass of fuel = 12.17 / 1 = 12.17

b ) Determine the lower heating value

LHV  of  ( C2H5OH) = 26.8 * 46 = 1232.8 MJ/kmol

LHV  of (C8H18). = 44.8 mj/kg * 114 kg/kmol = 5107.2 MJ/Kmol

LHV ( MJ/kmol)  for fuel mixture = 0.85 * 1232.8 + 0.15 * 5107.2 = 1813.96 MJ/kmol

c) Determine higher heating value  ( HHV )

HHV of (C2H5OH) = 29.7 * 46 = 1366.2 MJ/kmol

HHV of C8H18 = 47.9 MJ/kg * 114 = 5460.6 MJ/kmol

HHV  in MJ/kg  = 0.85 * 29.7 + 0.15 * 47.9  = 32.43 MJ/kg

HHV in  MJ /kmol  =  0.85 * 1366.2 + 0.15 * 5460.8 = 1980.39 MJ/Kmol

4 0
2 years ago
Steep safety ramps are built beside mountain highway to enable vehichles with fedective brakes to stop safely. a truck enters a
Veronika [31]

Answer:

a. 6 seconds

b. 180 feet

Explanation:

Images attached to show working.

a. You have the position of the truck so you integrate twice. Use the formula and plug in the time t = 7 sec. Check out uniform acceleration. The time at which the truck's velocity is zero  is when it stops.

b. Determine the initial speed. Plug in the time calculated in the previous step. From this we can observe that the truck comes to a stop before the end of the ramp.

7 0
3 years ago
Kerosene flows through 3/4 standard type K drawn copper tube. The pressure drop measured at two points 50 m apart is 130 kPa. De
jok3333 [9.3K]

Answer:

Q=4.98\times 10^{-3}\ m^3/s.

Explanation:

Given that

L= 50 m

Pressure drop = 130 KPa

copper tube is 3/4 standard type K drawn tube.

From standard chart ,the dimension of 3/4 standard type K copper tube given as

Outside diameter=22.22 mm

Inside diameter=18.92 mm

Dynamic viscosity for kerosene

\mu =0.00164\ Pa.s

We know that

\Delta P=\dfrac{128\mu QL}{\pi d_i^4}

Where Q is volume flow rate

L is length of tube

d_i is inner diameter of tube

ΔP is pressure drop

μ is dynamic viscosity

Now by putting the values

\Delta P=\dfrac{128\mu QL}{\pi d_i^4}

130\times 1000=\dfrac{128\times 0.00164\times 50Q}{\pi \times 0.01892^4}

Q=4.98\times 10^{-3}\ m^3/s

So flow rate is Q=4.98\times 10^{-3}\ m^3/s.

6 0
3 years ago
• Suppose that a particular algorithm has time complexity T(n) = 10 ∗ 2n, and that execution of the algorithm on a particular ma
elena-s [515]

Answer:

The number of inputs processed by the new machine is 64

Solution:

As per the question:

The time complexity is given by:

T(n) = 10\times 2n

where

n = number of inputs

T = Time taken by the machine for 'n' inputs

Also

The new machine is 65 times faster than the one currently in use.

Let us assume that the new machine takes the same time to solve k operations.

Then

T(k) = 64 T(n)

\frac{T(k)}{T(n)} = 64

\frac{20k}{20n} = 64

k = 64n

Thus the new machine will process 64 inputs in the time duration T

8 0
3 years ago
Other questions:
  • How does a carburetor work?
    7·1 answer
  • A fluid of specific gravity 0.96 flows steadily in a long, vertical 0.71-in.-diameter pipe with an average velocity of 0.90 ft/s
    5·2 answers
  • How to identify this fossil
    9·1 answer
  • The spring has a stiffness k = 200 N&gt;m and an unstretched length of 0.5 m. If it is attached to the 3-kg smooth collar and th
    12·1 answer
  • The structure of a house is such that it loses heat at a rate of 4500kJ/h per °C difference between the indoors and outdoors. A
    7·1 answer
  • Heating of Oil by Air. A flow of 2200 lbm/h of hydrocarbon oil at 100°F enters a heat exchanger, where it is heated to 150°F by
    7·1 answer
  • What is the angle of the input
    12·1 answer
  • Calculate the number of vacancies per cubic meter for some metal, M, at 783°C. The energy for vacancy formation is 0.95 eV/atom,
    11·1 answer
  • 3. Determine the most unfavorable arrangement of the crane loads and
    6·1 answer
  • What are the two (2) different design elements of scratch?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!