Answer:i think it is 35
Explanation:
i just guessed sorry im only in 5th grade
Answer:
a) Ql=33120000 kJ
b) COP = 5.6
c) COPreversible= 29.3
Explanation:
a) of the attached figure we have:
HP is heat pump, W is the work supplied, Th is the higher temperature, Tl is the low temperature, Ql is heat supplied and Qh is the heat rejected. The worj is:
W=Qh-Ql
Ql=Qh-W
where W=2000 kWh
Qh=120000 kJ/h

b) The coefficient of performance is:

c) The coefficient of performance of a reversible heat pump is:

Th=20+273=293 K
Tl=10+273=283K
Replacing:

Answer:
13.95
Explanation:
Given :
Vector A polar coordinates = ( 7, 70° )
Vector B polar coordinates = ( 4, 130° )
To find A . B we will
A ( r , ∅ ) = ( 7, 70 )
A = rcos∅ + rsin∅
therefore ; A = 2.394i + 6.57j
B ( r , ∅ ) = ( 4, 130° )
B = rcos∅ + rsin∅
therefore ; B = -2.57i + 3.06j
Hence ; A .B
( 2.394 i + 6.57j ) . ( -2.57 + 3.06j ) = 13.95
Answer:
The elastic modulus of the steel is 139062.5 N/in^2
Explanation:
Elastic modulus = stress ÷ strain
Load = 89,000 N
Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2
Stress = load/area = 89,000/0.64 = 139.0625 N/in^2
Length of steel bar = 4 in
Extension = 4×10^-3 in
Strain = extension/length = 4×10^-3/4 = 1×10^-3
Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2
Answer:
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.
Step-by-step solution:
Step 1 of 5
Given data:-
The velocity of water is .
The water flow rate is.