Actual Mechanical Advantage(AMA) = Weight / Force
Here, Weight = 764 N
Force = 255 N
Substitute the values in to the expression,
AMA = 764 / 255
AMA = 2.99
After rounding-off to the nearest tenth value, it would be 3
Finally, option C would be your answer.
Hope this helps!
The moon<span> is 1/4 the size of </span>Earth<span>, so the </span>moon's<span> gravity is much less than the </span>earth's gravity, 83.3% (or 5/6) less to be exact. Finally, "weight<span>" is a measure of the gravitational pull between two objects. So of course you would </span>weigh<span> much less on the </span>moon<span>.</span>
Answer: D. 0.5
Explanation:
The slope formula is y2-y1/x2-x1.
2-(-1)/4-(-2) = 2+1/4+2
2+1/4+2 = 3/6 = 1/2
1/2 = 0.5
The slope is 1/2, or 0.5.
Answer:
The answer to the question is
The ladybug begins to slide
Explanation:
To solve the question we assume that the frictional force of the ladybug and the gentleman bug are the same
Where the frictional force equals
= μ×N = m×g×μ
and the centripetal force is given by m·ω²·r
If we denote the properties of the ladybug as 1 and that of the gentleman bug as 2, we have
m₁×g×μ = m₁·ω²·r₁ ⇒ g×μ = ω²·r₁
and for the gentleman bug we have
m₂×g×μ = m₂·ω²·r₂ ⇒ g×μ = ω²·r₂
But r₁ = 2×r₂
Therefore substituting the values of r₁ =2×r₂ we have
g×μ = ω²·r₁ = g×μ = ω²·2·r₂
Therefore ω²·r₂ = 0.5×g×μ for the ladybug. That is the ladybug has to overcome half the frictional force experienced by the gentleman bug before it start to slide
The ladybug begins to slide