Answer:
See explanation
Explanation:
All molecules possess the London dispersion forces. However London dispersion forces is the only kind of intermolecular interaction that exists in nonpolar substances.
So, the only kind of intermolecular interaction that exists in dimethyl ether is London dispersion forces.
As for ethyl alcohol, the molecule is polar due to the presence of polar O-H bond. In addition to London dispersion forces, dipole-dipole interactions and specifically hydrogen bonding also occurs between the molecules.
Because ethyl alcohol is polar, it is more soluble in water than dimethyl ether.
Answer:
High temperature increases the number of high energy collisions
Explanation:
Increasing the temperature a reaction takes place at increases the rate of reaction. At higher temperatures, particles can collide more often and with more energy, which makes the reaction take place more quickly.
Thermodynamic quantity equivalent to the total heat content of a system It is equal to the internal energy of the system plus the product of pressure and volume
Question:
<span>A sample of nitrogen gas had a volume of 500mL, a pressure in its closed container of 740 torr and a temperature of 25°c. what was the volume of gas when the temperature was changed to 50°c and the new pressure was 760 torr?
Answer:
Data Given:
V</span>₁ = 500 mL
P₁ = 740 torr
T₁ = 25 °C + 273 = 298 K
V₂ = ?
P₂ = 760 torr
T₂ = 50 °C + 273 = 323 K
Solution:
Let suppose the gas is acting Ideally, then According to Ideal Gas Equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = (P₁ V₁ T₂) ÷ (T₁ P₂)
Putting Values,
V₂ = (740 torr × 500 mL × 323 K) ÷ (298 K × 760 torr)
V₂ = 527.68 mL
The answer is A because of the shear thickness of diesel fuel