Explanation:
The given data is as follows.
= 98.70 kPa = 98700 Pa,
T =
= (30 + 273) K = 303 K
height (h) = 30 mm = 0.03 m (as 1 m = 100 mm)
Density = 13.534 g/mL = 
= 13534 
The relation between pressure and atmospheric pressure is as follows.
P = 
Putting the given values into the above formula as follows.
P = 
= 
= 102683.05 Pa
= 102.68 kPa
thus, we can conclude that the pressure of the given methane gas is 102.68 kPa.
Answer:
2AlCl3 + Ca3N2 - 2AlN+ 3CaCl2
Hi there ,
The Bohre's atomic model represents movement of electrons in specific orbit around the nucleus of an atom.
Hope it helps.
The correct answer from the choices given is the last option. The can from the <span> car will lose the carbon more quickly because there are fewer solute–solvent collisions. The can in the car has a lower temperature than the one in the refrigerator. At low temperature, the solubility of carbon dioxide in the liquid decrease therefore particles would tend to be in the vapor phase and escape from the liquid.</span>
False, as oceans can act as carbon sinks along with forests.