Answer:
3.036×10⁻¹⁰ N
Explanation:
From newton's law of universal gravitation,
F = Gm1m2/r² .............................. Equation 1
Where F = Gravitational force between the balls, m1 = mass of the first ball, m2 = mass of the second ball, r = distance between their centers.
G = gravitational constant
Given: m1 = 7.9 kg, m2 = 6.1 kg, r = 2.0 m, G = 6.67×10⁻¹¹ Nm²/C²
Substituting into equation 1
F = 6.67×10⁻¹¹×7.9×6.1/2²
F = 321.427×10⁻¹¹/4
F = 30.36×10⁻¹¹
F = 3.036×10⁻¹⁰ N
Hence the force between the balls = 3.036×10⁻¹⁰ N
Solar energy - A
nuclear energy - B
fossil fuel energy - C
wind energy - D
geothermal energy - E
Answer: 161.3
I have a acellus too and got this question correct, so I hope this helps y’all out
Answer:
a)n= 3.125 x
electrons.
b)J= 1.515 x
A/m²
c)
=1.114 x
m/s
d) see explanation
Explanation:
Current 'I' = 5A =>5C/s
diameter 'd'= 2.05 x
m
radius 'r' = d/2 => 1.025 x
m
no. of electrons 'n'= 8.5 x
a) the amount of electrons pass through the light bulb each second can be determined by:
I= Q/t
Q= I x t => 5 x 1
Q= 5C
As we know that: Q= ne
where e is the charge of electron i.e 1.6 x
C
n= Q/e => 5/ 1.6 x 
n= 3.125 x
electrons.
b) the current density 'J' in the wire is given by
J= I/A => I/πr²
J= 5 / (3.14 x (1.025x
)²)
J= 1.515 x
A/m²
c) The typical speed'
' of an electron is given by:
=
=1.515 x
/ 8.5 x
x |-1.6 x
|
=1.114 x
m/s
d) According to these equations,
J= I/A
=
=
If you were to use wire of twice the diameter, the current density and drift speed will change
Increase in the diameter increase the cross sectional area and decreases the current density as it has inverse relation.
Also drift velocity will decrease as it is inversely proportional to the area
What is the difference between<span> a</span>size declarator<span> and a </span>subscript<span>? The </span>size declarator<span> is ... When writing a function that accepts a two-dimensional </span>array<span> as an argument, which </span>size declarator<span> must you provide in the parameter </span>for<span> the</span>array<span>? The second size ...</span>