For Fraunhofer diffraction at a single slit would be represented by:
<span>a sinθ = mλ
</span><span>It should be noted that the angle needs be halved because we are only concerned with the angle between m=1 and m=0 and they gave you the angle between m=1 to the right of the center and m=1 on the left of the center. We calculate as follows:
</span>
<span>a sin(45/2)=(1)(470)
a = 1228 nm
Hope this answers the question. Have a nice day.
</span>
Answer:
The electric field inside the wire will remain the same or constant, while the drift velocity will by a factor of four.
Explanation:
Electron mobility, μ =
where
= Drift velocity
E = Electric field
Given that the electric field strength = 1.48 V/m,
Therefore since the electric potential depends on the length of the wire and the attached potential difference, then when the electron mobility is increased 4 times the Electric field E will be the same but the drift velocity will increase four times. That is
4·μ = 
Answer: in this question, the only charge in the cavity is Q. Inside the conducting spherical shell, the electric field is zero.
While outside the shell, the electric field is given by: k(q + Q)/r²
Where;
K= is a constant which is given as, 8.99 x 10^9 N m² / C².
Q= source charge which creates the electric field
q= is the test charge which is used to measure the strength of the electric field at a given location.
r= is the radius
Explanation: Inside the conducting spherical shell, the electric field is zero since the Electric field vanishes everywhere inside the volume of a good conductor.
Answer:
(F)reaction = - 75 N
where, negative sign shows opposite direction.
Explanation:
This question can be answered using Newton's third law of motion. The Newton's Third Law of Motion states that for every action force there is an equal but opposite reaction force.
(F)action = - (F)reaction
Hence, in our scenario if we consider the 75 Newton force applied on the wall to be the action force then the reaction force of the wall must be equal to it in opposite direction. Therefore, the reaction push of the wall must be equal to 75 N.
<u>(F)reaction = - 75 N</u>
<u>where, negative sign shows opposite direction.</u>
Each resistor has the same voltage across it, and Current=(voltage)/(resistance).
The lowest resistance has the highest current through it. That's the 4-ohm unit.