1h----------------> 70x3=210 bacteria
2h-----------------> 210*3=630 bactaeria
let be y the number of bacteria at the t=0h
it is y=70 3^0
for t= 1h
y=70*3^1=210
for t=2h
y=70*3^2=630
so we can write y=70*3^x, where x is the number of hour
Answer:
,
, 
Explanation:
The cube root of the complex number can determined by the following De Moivre's Formula:
![z^{\frac{1}{n} } = r^{\frac{1}{n} }\cdot \left[\cos\left(\frac{x + 2\pi\cdot k}{n} \right) + i\cdot \sin\left(\frac{x+2\pi\cdot k}{n} \right)\right]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%20%3D%20r%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%5Ccdot%20%5Cleft%5B%5Ccos%5Cleft%28%5Cfrac%7Bx%20%2B%202%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%20%2B%20i%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7Bx%2B2%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%5Cright%5D)
Where angles are measured in radians and k represents an integer between
and
.
The magnitude of the complex number is
and the equivalent angular value is
. The set of cubic roots are, respectively:
k = 0
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{1.817\pi}{3} \right)+i\cdot \sin\left(\frac{1.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 1
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{3.817\pi}{3} \right)+i\cdot \sin\left(\frac{3.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 2
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{5.817\pi}{3} \right)+i\cdot \sin\left(\frac{5.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

Answer: A.
Explanation: Roughly 180 - 200 million years ago, just before the first dinosaurs evolved. Mammals themselves evolved from a group or reptiles which exhibited mammal-like traits. One of them was specialized teeth. Reptiles tend to have teeth all the same shape. The mammal-like reptiles evolved tiny teeth in front of the jaw and two pairs of over sized fangs along the the sides. Like modern mammals, the head was large in proportion to the rest of the body. The jaws were also evolving another mammal trait, the ability to move sideways. Despite the lack of specialized teeth, acute hearing and the ability to chew, the dinosaurs evolved an adaptation which made them far more successful than mammals--modified leg bones. These limbs could be articulated directly under their bodies. This enabled the legs to support more weight, since the limbs were now under the body instead of at the sides. Then dinosaurs did something which secured their dominance for the next 120 million years - they began to stand on two legs. Although the back was still parallel to the ground, running on two legs greatly increased the dinosaur's speed. Mammals could simply not compete with swift, giant predators and were forced to remain small, and most became nocturnal to evade dinosaurs which were probably active during the day. Despite that they managed to survive which allowed the further evolution of mammals into us, humans.
Adam<span> applies and input force to the pulley as he pulls down to </span>lift the object<span>. As he does this, </span>Adam<span>wonders about how the pulley is </span>helping<span> him
</span>