In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
Answer:
The efficiency is 0.33, or 33%.
Explanation:
From the thermodynamics equations, we know that the formula for the efficiency of a heat engine is:

Where η is the efficiency of the engine, Q_1 is the heat energy taken from the hot source and Q_2 is the heat energy given to the cold object. So, plugging the given values in the formula, we obtain:

This means that the efficiency of the heat engine is 0.33, or 33% (The efficiency of an engine is dimensionless).
Answer:
1497×10⁵ km
Explanation:
Speed of light in vacuum = 3×10⁵ km/s
Time taken by the light of the Sun to reach the Earth = 8 min and 19 s
Converting to seconds we get
8×60+19 = 499 seconds
Distance = Speed × Time

1 AU = 1497×10⁵ km
The Sun is 1497×10⁵ km from Earth
Answer:
a) 43.20V
b) 2.71W/s
c) 40.25s
d) 7.77Nm
Explanation:
(a) The emf of a rotating coil with N turns is given by:

N: turns
B: magnitude of the magnetic field
A: area
w: angular velocity
the emf max is given by:

(b) the maximum rate of change of the magnetic flux is given by:

(c) 
(d) The torque is given by:

Answer:
Explanation:
340 m/s / 968 cyc/s = 0.3512396... ≈ 35.1 cm