If bonds are broken, the energy is released, and if bonds are formed, energy is absorbed. During conversions from chemical energy to thermal energy, the energy stored in the chemical bonds are released and this energy causes surrounding molecules to move faster thus increasing the thermal energy of a substance.
The work done on the box by the applied force is zero.
The work done by the force of gravity is 75.95 J
The work done on the box by the normal force is 75.95 J.
<h3>The given parameters:</h3>
- Mass of the box, m = 3.1 kg
- Distance moved by the box, d = 2.5 m
- Coefficient of friction, = 0.35
- Inclination of the force, θ = 30⁰
<h3>What is work - done?</h3>
- Work is said to be done when the applied force moves an object to a certain distance
The work done on the box by the applied force is calculated as;

where;
a is the acceleration of the box
The acceleration of the box is zero since the box moved at a constant speed.

The work done by the force of gravity is calculated as follows;

The work done on the box by the normal force is calculated as follows;

Learn more about work done here: brainly.com/question/8119756
Explanation:
the force acting perpendicularly on unit area of surface
- unit=pascle .
Answer:
it would have potential energy
Answer:

Explanation:
The electric flux is defined as the multiple of electric field and the area that the electric field passes through, such that

When calculating the electric flux, the angle between the directions of electric field and the area becomes important, especially if the angle is changing with time.
The above formula can be rewritten as follows

where θ is the angle between the electric field and the area of the loop. Note that, the direction of the area of the loop is perpendicular to the plane of the loop.
If the loop is rotating with constant angular velocity ω, then the angle can be written as follows

At t = 0, cos(0) = 1 and the electric flux through the loop is at its maximum value.
Therefore the electric flux can be written as a function of time
