It's hard to tell exactly what's happening in that 110 cm that you marked over the wave. What is under the ends of the long arrow ? How many complete waves ? I counted 4.5 complete waves ... maybe ?
If there are 4.5 complete waves in 110cm, then the length of 1 wave is (110/4.5)=24.44cm.
Frequency = speed/wavelength
Frequency = 2m/s /0.2444m
Frequency = 8.18 Hz
Answer:
8.00 kJ
Explanation:
The first thing is to determine what quantities are there.
the mass of water = 1 000 kg
initial velocity, u = 6 m/s
final velocity, v = 4 m/s
the generator is operating at 100 % efficiency, so there is no energy loss.
The kinetic energy, Ek is converted to electrical energy, therefore Ek = electrical energy.
The kinetic energy is calculated as follows:
Ek = 1/2 mv²
= 1/2×(1 000)× (4)²
= 8 000 J/s
= 8.00 kJ Ans
If you are involved in a collision, it's important that you stop your car and protect others, as well as your self, from oncoming traffic. If you do not stop, you will have an arrest warrant against your name as it can safely be considered a 'hit and run.'
Answer:
Explanation:
1- Density increase as the temperature decreases. This is the reason why liquid water is more dense than solid water.
2- The only things that affect the period of a simple pendulum are its length and the acceleration due to gravity.
3- not really sure for that one...I will think about that.
4- same reason for number 3
During the fall, all the initial potential energy of the rock

has converted into kinetic energy of motion

where h is the initial height of the rock, m its mass, and v its velocity just before hitting the water. So, for energy conservation, we have

and so we can find the value of K, the kinetic energy of the rock just before hitting the ground: