1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EastWind [94]
3 years ago
12

A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it i

s true to say that
Physics
1 answer:
lianna [129]3 years ago
7 0

Answer:

<em>A) the moment of inertia of the system decreases and the angular speed increases. </em>

Explanation:

The complete question is

A merry-go-round spins freely when Diego moves quickly to the center along a radius of the  merry-go-round. As he does this, It is true to say that

A) the moment of inertia of the system decreases and the angular speed increases.

B) the moment of inertia of the system decreases and the angular speed decreases.

C) the moment of inertia of the system decreases and the angular speed remains the same.

D) the moment of inertia of the system increases and the angular speed increases.

E) the moment of inertia of the system increases and the angular speed decreases

In angular momentum conservation, the initial angular momentum of the system is conserved, and is equal to the final angular momentum of the system. The equation of this angular momentum conservation is given as

I_{1} w_{1} = I_{2} w_{2}    ....1

where I_{1} and I_{2} are the initial and final moment of inertia respectively.

and w_{1} and w_{2} are the initial and final angular speed respectively.

Also, we know that the moment of inertia of a rotating body is given as

I = mr^{2}    ....2

where m is the mass of the rotating body,

and r is the radius of the rotating body from its center.

We can see from equation 2 that decreasing the radius of rotation of the body will decrease the moment of inertia of the body.

From equation 1, we see that in order for the angular momentum to be conserved, the decrease from I_{1} to I_{2} will cause the angular speed of the system to increase from w_{1} to w_{2} .

From this we can clearly see that reducing the radius of rotation will decrease the moment of inertia, and increase the angular speed.

You might be interested in
A cylinder of radius R, length L, and mass M is released from rest on a slope inclined at angle θ. It is oriented to roll straig
inna [77]

Answer:

\mu_s=\frac{1}{3}\tan \theta

Explanation:

Let the minimum coefficient of static friction be \mu_s.

Given:

Mass of the cylinder = M

Radius of the cylinder = R

Length of the cylinder = L

Angle of inclination = \theta

Initial velocity of the cylinder (Released from rest) = 0

Since, the cylinder is translating and rolling down the incline, it has both translational and rotational motion. So, we need to consider the effect of moment of Inertia also.

We know that, for a rolling object, torque acting on it is given as the product of moment of inertia and its angular acceleration. So,

\tau =I\alpha

Now, angular acceleration is given as:

\alpha = \frac{a}{R}\\Where, a\rightarrow \textrm{linear acceleration of the cylinder}

Also, moment of inertia for a cylinder is given as:

I=\frac{MR^2}{2}

Therefore, the torque acting on the cylinder can be rewritten as:

\tau = \frac{MR^2}{2}\times \frac{a}{R}=\frac{MRa}{2}------ 1

Consider the free body diagram of the cylinder on the incline. The forces acting along the incline are mg\sin \theta\ and\ f. The net force acting along the incline is given as:

F_{net}=Mg\sin \theta-f\\But,\ f=\mu_s N\\So, F_{net}=Mg\sin \theta -\mu_s N-------- 2

Now, consider the forces acting perpendicular to the incline. As there is no motion in the perpendicular direction, net force is zero.

So, N=Mg\cos \theta

Plugging in N=Mg\cos \theta in equation (2), we get

F_{net}=Mg\sin \theta -\mu_s Mg\cos \theta\\F_{net}=Mg(\sin \theta-\mu_s \cos \theta)--------------3

Now, as per Newton's second law,

F_{net}=Ma\\Mg(\sin \theta-\mu_s \cos \theta)=Ma\\\therefore a=g(\sin \theta-\mu_s \cos \theta)------4

Now, torque acting on the cylinder is provided by the frictional force and is given as the product of frictional force and radius of the cylinder.

\tau=fR\\\frac{MRa}{2}=\mu_sMg\cos \theta\times  R\\\\a=2\times \mu_sg\cos \theta\\\\But, a=g(\sin \theta-\mu_s \cos \theta)\\\\\therefore g(\sin \theta-\mu_s \cos \theta)=2\times \mu_sg\cos \theta\\\\\sin \theta-\mu_s \cos \theta=2\mu_s\cos \theta\\\\\sin \theta=2\mu_s\cos \theta+\mu_s\cos \theta\\\\\sin \theta=3\mu_s \cos \theta\\\\\mu_s=\frac{\sin \theta}{3\cos \theta}\\\\\mu_s=\frac{1}{3}\tan \theta............(\because \frac{\sin \theta}{\cos \theta}=\tan \theta)

Therefore, the minimum coefficient of static friction needed for the cylinder to roll down without slipping is given as:

\mu_s=\frac{1}{3}\tan \theta

3 0
2 years ago
Read 2 more answers
Jupiter is a much more massive planet than Earth. What would happen to a person’s mass and weight if he were on Jupiter?
Harrizon [31]
There would be no mass or weight and he would float away
5 0
3 years ago
Read 2 more answers
Consumers that eat both producers and other consumers are known as
matrenka [14]
Omnivores...————Fhfhfjdhfh
3 0
3 years ago
Which materials are the best thermal insulators?
MrMuchimi
I think that the answe is gasses.
8 0
3 years ago
Read 2 more answers
A container in the shape of a cube 10.0 cm on each edge contains air (with equivalent molar mass 28.9 g/mol) at atmospheric pres
Vikentia [17]

Answer:

a) m = 1.174 grams

b) F_g = 0.01151 N

c) F_c = 1013 N

Explanation:

Given:

- The length of a cube L = 10.0 cm

- The molar mass of air M = 28.9 g/mol

- Pressure of air P = 101.3 KPa

- Temperature of air T = 300 K

- Universal Gas constant R = 8.314 J/kgK

Find:

(a) the mass of the gas

(b) the gravitational force exerted on it

(c) the force it exerts on each face of the cube

(d) Why does such a small sample exert such a great force? (6%)

Solution:

- Compute the volume of the cube:

                               V = L^3  = 0.1^3 = 0.001 m^3

- Use Ideal gas law equation and compute number of moles of air n:

                               P*V = n*R*T

                                n = P*V / R*T

                                n = 101.3*10^3 * 0.001 / 8.314*300

                                n = 0.04061 moles

- Compute the mass of the gas:

                                m = n*M

                                m = 0.04061*28.9

                                m = 1.174 grams

- The gravitational force exerted on the mass of gas is due to its weight:

                                F_g = m*g

                                F_g = 1.174*9.81*10^-3

                               F_g = 0.01151 N

- The force exerted on each face of cube is due its surface area:

                                F_c = P*A

                                F_c = (101.3*10^3)*(0.1)^2

                                F_c = 1013 N

- The molecules of a gas have high kinetic energy; hence, high momentum. When they collide with the walls they transfer momentum per unit time as force. Higher the velocity of the particles higher the momentum higher the force exerted.

4 0
3 years ago
Other questions:
  • Element X has five valence electrons, element Y has one valence electron, and element Z has one valence electron. Which two of t
    6·2 answers
  • I NEED ANSWERS QUICK
    11·2 answers
  • Mendel made conclusions about inheritance without ever seeing chromosomes or knowing about DNA. Which technology has enabled the
    5·2 answers
  • NEVERMIN I've got it. :D
    15·1 answer
  • A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing e
    12·1 answer
  • Which electromagnetic wave types have frequencies higher than visible light?
    11·2 answers
  • A Carnot engine takes 3000 J from a reservoir at 600 K, does some work, and discards some heat to a reservoir at 300 K. What is
    9·1 answer
  • A 2,100 kg car drives east toward a 55 kg shopping cart that has a velocity of 0.50 m/s west. The two objects collide, giving th
    15·2 answers
  • The speed of light is 3 x 10 m/s.
    15·1 answer
  • How do biological and environmental factors affect behavior?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!