When they say use energy, you want to use
Total energy = potential energy + kinetic energy = mgh + 1/2mv²
I assume you mean 200 g ball,
so, we know the total distance traveled is going to be 13 - 1.3 = 11.7 m
If the ball just makes it to the top ( 13 m ) , then the ball will stop moving and the kinetic energy will be 0,
therefore, the potential energy at the top will be the total energy of the system = mgh
from this, we say that mgh = 1/2mv² solve for v
<span>
v = sqrt (2gh) = 15.2 m/s </span>
Answer:
IMA = 2.5 metres
EFFICIENCY = 80%
Explanation:
The AMA of a machine is referred to as the Actual Mechanical Advantage of a machine, calculated as the ratio of the output to the input force.
The Ideal Mechanical Advantage is the ratio of the input distance to the output distance.
From the diagram, the input distance which is also the distance moved by effort = 5metres
The load distance (output distance) = 2 metres
IMA = INPUT DISTANCE / OUTPUT DISTANCE
IMA = 5metres / 2 metres = 2.5 meters
Efficiency is the ratio of AMA TO IMA
AMA = 2, IMA = 2.5
EFFICIENCY = AMA / IMA
EFFICIENCY = (2 / 2.5) × 100%= 0.8 × 100%
EFFICIENCY = 80%
Power = work/time = (Force times distance)/time
= (30N *10.0m)/5.00s = 300/5 = 60 Watts
Answer:
A high pitch sound corresponds to a high frequency sound wave and a low pitch sound corresponds to a low frequency sound wave. I hope I got it correct !!
1. One
2. Oohm
Hope this helps