Answer:
t = T/4
Explanation:
The power delivered to the mass by the spring is work done by the spring per second.

The work done by the spring is equal to the elastic potential energy stored in the spring.

The maximum energy stored in the spring is at the amplitude of the oscillation.

So the first time the mass reaches to its amplitude can be found by the following equation of motion:

When the mass reaches the amplitude:

because cos(π) = 1.

Using ω = 2π/T,

Answer:
The work done on the object by the force in the 5.60 s interval is 40.93 J.
Explanation:
Given that,
Force 
Mass of object = 2.00 kg
Initial position 
Final position 
Time = 4.00 sec
We need to calculate the work done on the object by the force in the 5.60 s interval.
Using formula of work done


Put the value into the formula




Hence, The work done on the object by the force in the 5.60 s interval is 40.93 J.
sandpaper and gravel surface
Answer:
When an object moves in a straight line, it is said to be in linear motion. By Newton's first law of motion, a body tends to be in rest or motion in a straight line until a net non-zero force acts on it.
Rate of change of position with respect to time is known as velocity. Uniformly accelerated motion refers to the motion where the rate of change of velocity with respect to time is constant.
Kinematic equations can be used to measure different aspects of a linear motion:
v = u + a t
s = u t + 0.5 a t²
v²= u² + 2 a s
where, u is initial velocity, v is final velocity, a is acceleration, t is time and s is displacement.
Answer:
v_y = v_{oy} - g t
where the upward direction is positive, so the arrow represents this speed (blue) must decrease, reach zero and grow in a negative direction as time progresses
Explanation:
In this exercise you are asked to observe the change in velocity in a projectile launch.
If we assume that the friction force is small, the velocity in the x-axis must be constant
vₓ = v₀ₓ
Therefore, the arrow (red) that represents this movement must not change in magnitude.
In the direction of the y axis, the acceleration of gravity is acting, so the magnitude of the velocity in this axis changes
v_y = v_{oy} - g t
where the upward direction is positive, so the arrow represents this speed (blue) must decrease, reach zero and grow in a negative direction as time progresses