The volume of N₂ at STP=56 L
<h3>Further explanation</h3>
Given
2.5 moles of N₂
Required
The volume of the gas
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, the volume per mole of gas or the molar volume-Vm is 22.4 liters/mol.
So for 2.5 moles gas :

Answer:
<u></u>
Explanation:
<u>1. Balanced molecular equation</u>

<u>2. Mole ratio</u>

<u>3. Moles of HNO₃</u>
- Number of moles = Molarity × Volume in liters
- n = 0.600M × 0.0100 liter = 0.00600 mol HNO₃
<u>4. Moles Ba(OH)₂</u>
- n = 0.700M × 0.0310 liter = 0.0217 mol
<u>5. Limiting reactant</u>
Actual ratio:

Since the ratio of the moles of HNO₃ available to the moles of Ba(OH)₂ available is less than the theoretical mole ratio, HNO₃ is the limiting reactant.
Thus, 0.006 moles of HNO₃ will react completely with 0.003 moles of Ba(OH)₂ and 0.0217 - 0.003 = 0.0187 moles will be left over.
<u>6. Final molarity of Ba(OH)₂</u>
- Molarity = number of moles / volume in liters
- Molarity = 0.0187 mol / (0.0100 + 0.0031) liter = 0.456M
Answer:
=zero degrease, 1 atm)? so the volume of an ideal gas is 22.l/mol at STP this, 22l.4Lis probably the most remembered and least useful number in chemistry
E ground pushes you forward. But that interaction is friction. Reduce friction and it doesn't matter how strong your legs are, the surface is incapable of pushing you accordingly. The coefficient of static friction is very low so it is easy to slide your foot rather than push.
Answer:
Explanation:
6CO₂ + 6 H₂O ⇄ C₆H₁₂0₆ + 6O₂
This is the chemical equation given .
1. The equation shows a __Chemical equation_______the breaking and forming of chemical bonds that leads to a change in the composition of matter.
2. In the equation, CO₂ is a___reactant_____.
3. In the equation, C₆H₁₂0₆ is a ___product________.
4. In O₂, the type of bond that holds the two oxygen atoms together is a_nonpolar_covalent bond_________.
5. In H₂O, the type of bond that holds one of the hydrogen atoms to the oxygen atom is a__polar_hydrogen bond____.
6. The number of oxygen atoms on the left side of the equation is__equal to_________ the number of oxygen atoms on the right side.