Answer:
Na and Cl
Explanation:
An ionic compound is solid at state room temperature. Therefore Na and Cl would be the correct answer :)
Answer:
109.7178g of H2O
Explanation:
First let us generate a balanced equation for the reaction. This is illustrated below:
2C3H8O + 9O2 —> 6CO2 + 8H2O
Next we will calculate the molar mass and masses of C3H8O and H20. This is illustrated below:
Molar Mass of C3H8O = (3x12.011) + (8x1.00794) + 15.9994 = 36.033 + 8.06352 + 15.9994 = 60.09592g/mol.
Mass of C3H8O from the balanced equation = 2 x 60.09592 = 120.19184g
Molar Mass of H2O = (2x1.00794) + 15.9994 = 2.01588 + 15.9994 = 18.01528g/mol
Mass of H2O from the balanced equation = 8 x 18.01528 = 144.12224g
From the equation,
120.19184g of C3H8O produced 144.12224g of H20.
Therefore, 91.5g of C3H8O will produce = (91.5 x 144.12224) /120.19184 = 109.7178g of H2O
The question is incomplete, complete question is :
Determine the pH of an HF solution of each of the following concentrations. In which cases can you not make the simplifying assumption that x is small? ( for HF is .)
[HF] = 0.280 M
Express your answer to two decimal places.
Answer:
The pH of an 0.280 M HF solution is 1.87.
Explanation:3
Initial concentration if HF = c = 0.280 M
Dissociation constant of the HF =
Initially
c 0 0
At equilibrium :
(c-x) x x
The expression of disassociation constant is given as:
Solving for x, we get:
x = 0.01346 M
So, the concentration of hydrogen ion at equilibrium is :
The pH of the solution is ;
The pH of an 0.280 M HF solution is 1.87.
Volume of Hydrogen V1 = 351mL
Temperature T1 = 20 = 20 + 273 = 293 K
Temperature T2 = 38 = 38 + 273 = 311 K
We have V1 x T2 = V2 x T1
So V2 = (V1 x T2) / T1 = (351 x 311) / 293 = 372.56
Volume at 38 C = 373 ml