Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
B. When the ball is rolling across the floor at a constant velocity, the change in its kinetic energy is zero.
<h3>
What is change in kinetic energy?</h3>
The change in kinetic energy of an object is the dereference between the final kinetic energy and the initial kinetic energy.
ΔK.E = K.Ef - K.Ei
ΔK.E = 0.5m(vf² - vi²)
where;
- K.Ef is the final kinetic energy
- K.Ei is the initial kinetic energy
- vf is final velocity
- vi is initial velocity
At constant velocity, the initial velocity and final velocity are equal.
ΔK.E = 0.5m(0) = 0
Thus, when the ball is rolling across the floor at a constant velocity, the change in its kinetic energy is zero.
Learn more about kinetic energy here: brainly.com/question/25959744
#SPJ1
You can look at magnesium, it can react with oxygen to form oxides. (chemical) it is malleable and a solid at room temperature. (physical)
to measure its density, the mass and volume can be worked out and from this density too. look up the equation, it is quite easy :)
physical changes -- it can be melted, and oxidized <span />
Answer:
.7934
Explanation:
Acceleration = change in velocity / change in time
A = 10.98
/ 13.84
A = .7934