Answer:
(2R,3S)-2-ethoxy-3-methylpentane
and
(2S,3S)-2-ethoxy-3-methylpentane
Explanation:
For this case, we will have
as nucleophile. Also, this compound is also in excess. So, we will have as solvent
a protic solvent. Therefore the Sn1 reaction would be favored.
The first step would be the carbocation formation followed by the attack of the nucleophile. In this case both isomers would be produced: R and S (see figure).
A cation is a positively charged ion.
An anion is a negatively charged ion.
If it's neutral, it's just an ion.
Answer:
See explanation
Explanation:
The reaction that we are considering here is quite a knotty reaction. It is difficult to decide if the mechanism is actually E1 or E2 since both are equally probable based on the mass of scientific evidence regarding this reaction. However, we can easily assume that the methylenecyclohexane was formed by an E1 mechanism.
Looking at the products, one could convincingly assert that the reaction leading to the formation of the two main products proceeds via an E1 mechanism with the formation of a carbocation intermediate as has been shown in mechanism attached to this answer. Possible rearrangement of the carbocation yields the 3-methylcyclohexene product.
Answer:
Final molarity of iodide ion C(I-) = 0.0143M
Explanation:
n = (m(FeI(2)))/(M(FeI(2))
Molar mass of FeI(3) = 55.85+(127 x 2) = 309.85g/mol
So n = 0.981/309.85 = 0.0031 mol
V(solution) = 150mL = 0.15L
C(AgNO3) = 35mM = 0.035M = 0.035m/L
n(AgNO3) = C(AgNO3) x V(solution)
= 0.035 x 0.15 = 0.00525 mol
(AgNO3) + FeI(3) = AgI(3) + FeNO3
So, n(FeI(3)) excess = 0.00525 - 0.0031 = 0.00215mol
C(I-) = C(FeI(3)) = [n(FeI(3)) excess]/ [V(solution)] = 0.00215/0.15 = 0.0143mol/L or 0.0143M
Let's write the equation

According to law of conservation of mass .
- Mass of products=Mass of reactants
Let required value be x



