1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FrozenT [24]
3 years ago
9

A proton moves from a location where V = 87 V to a spot where V = -40 V. (a) What is the change in the proton's kinetic energy?

J
(b) If we replace the proton with an electron, what is the change in kinetic energy? J
Physics
1 answer:
Art [367]3 years ago
6 0

Answer: a) 127 eV; b) there is no change of kinetic energy.

Explanation: In order to explain this problem we have to use the change of potentail energy ( conservative field) is equal to changes in kinetic energy. So for the proton ther move to lower potential then they gain kinetic energy from the electric field.  This means the electric force do work in this trayectory and then the protons increased changes its speed.

If we replace the proton by a electron we have a very different situaction, the electrons are located in a lower potental then  they can not move to higher potential  if any  external force does work on the system.

In resumem, the electrons do not move from a point with V=87 to other point with V=-40 V. The electric force point to high potential so the electrons  can not move to lower potential region (V=-40V).

You might be interested in
The base of a pyramid covers an area of 13.0 acres (1 acre = 43,560 ft2) and has a height of 481 ft. If the volume of a pyramid
Allisa [31]
V = 1/3 Bh v = 1/3 (13 ac)(43560ft^2/ac)(481ft) v = 90793560 ft^3 * 0.3048m/ft * 0.3048m/ft * 0.3048m/ft = 2570987m^3
3 0
3 years ago
Read 2 more answers
Can someone help me with this activity?
Inessa05 [86]
What class is that in if math or biology I’m not good that
8 0
3 years ago
Remember to include your data, equation, and work when solving this problem.
andrezito [222]

Answer:

F = 0.00156[N]

Explanation:

We can solve this problem by using Newton's proposed universal gravitation law.

F=G*\frac{m_{1} *m_{2} }{r^{2} } \\

Where:

F = gravitational force between the moon and Ellen; units [Newtos] or [N]

G = universal gravitational constant = 6.67 * 10^-11 [N^2*m^2/(kg^2)]

m1= Ellen's mass [kg]

m2= Moon's mass [kg]

r = distance from the moon to the earth [meters] or [m].

Data:

G = 6.67 * 10^-11 [N^2*m^2/(kg^2)]

m1 = 47 [kg]

m2 = 7.35 * 10^22 [kg]

r = 3.84 * 10^8 [m]

F=6.67*10^{-11} * \frac{47*7.35*10^{22} }{(3.84*10^8)^{2} }\\ F= 0.00156 [N]

This force is very small compare with the force exerted by the earth to Ellen's body. That is the reason that her body does not float away.

6 0
2 years ago
where σ(t) and σ(0) represents the time-dependent and initial (i.e., time =0) stresses, respectively, and t and τ denote elapsed
lesya [120]

Answer:

E_r(6)=4.35614\ MPa

Explanation:

\epsilon = Strain = 0.49

\sigma _0 = 3.1 MPa

At t = Time = 32 s \sigma = 0.41 MPa

\tau = Time-independent constant

Stress relation with time

\sigma=\sigma _0exp\left(-\frac{t}{\tau}\right)

at t = 32 s

0.41=3.1exp\left(-\frac{32}{\tau}\right)\\\Rightarrow exp\left(-\frac{32}{\tau}\right)=\frac{0.41}{3}\\\Rightarrow -\frac{32}{\tau}=ln\frac{0.41}{3}\\\Rightarrow \tau=-\frac{32}{ln\frac{0.41}{3}}\\\Rightarrow \tau=16.0787\ s

The time independent constant is 16.0787 s

E_{r}(t)=\frac{\sigma(t)}{\epsilon_0}

At t = 6

\\\Rightarrow E_{r}(6)=\frac{\sigma(6)}{\epsilon_0}

From the first equation

\sigma(t)=\sigma _0exp\left(-\frac{t}{\tau}\right)\\\Rightarrow \sigma(6)=3.1exp\left(-\frac{6}{16.0787}\right)\\\Rightarrow \sigma(6)=2.13451

E_r(6)=\frac{2.13451}{0.49}\\\Rightarrow E_r(6)=4.35614\ MPa

E_r(6)=4.35614\ MPa

6 0
3 years ago
A 39.3 g glass thermometer reads 22.0oC before it
ratelena [41]

Answer:

44.85C

Explanation:

Let the specific heat of glass thermometer be 0.84 J/g°C

Let the specific heat of water be 4.186 j/g °C

Let the water density be 1kg/L

136 mL of water = 0.136L of water = 0.136 kg of water = 136 g of water

Since the change of temperature on the glass thermometer is 43.6 - 22 = 21.6 C. We can then calculate the heat energy absorbed to it:

E = m_gc_g \Delta T = 39.3 * 0.84 * 21.6 = 713.06 J

Assume no energy is lost to outside, by the law of energy conservation, this heat energy would come from water

E = m_wc_w(T - T_w) = 713.06

136*4.186(T - 43.6) = 713.06

T - 43.6 = \frac{713.06}{136*4.186} = 1.25

T = 1.25 + 43.6 = 44.85C

6 0
3 years ago
Other questions:
  • Fill in the blanks with the terms that complete the sentences about nuclear power plants. Without a critical of fissionable mate
    11·2 answers
  • Se dispara una bala con una velocidad de v = 300[m/s] contra un cascarón esférico de papel que gira con MCU respecto a un eje ve
    5·1 answer
  • On a horizontal, linear track lies a cart that has a fan attached to it. The mass of the cart plus fan is 364 g. The cart is pos
    15·2 answers
  • Describe at least 1 advantage and 1 disadvantaged to learning about a scientific discovery from
    10·1 answer
  • Two sources of light of wavelength 700 nm are 9 m away from a pinhole of diameter 1.2 mm. How far apart must the sources be for
    8·1 answer
  • Question: A net force of 16 N [40° W of N] is caused by two applied forces acting on the same object. These two forces are: A) 1
    8·1 answer
  • There are 13 boys are 4 girls in the jazz band find the ratio of the number of boys in the band to the total number of students
    13·1 answer
  • As the air on the surface of the earth warms what happens to the density of the air
    7·1 answer
  • A 100. N block sits on a rough horizontal floor. The coefficient of sliding friction between the block and the floor is 0.250. A
    9·1 answer
  • Which is not a characteristic of a compound? Different samples have different properties Can be represented by a chemical formul
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!