<u>Ans: Acetic acid = 90.3 mM and Sodium acetate = 160 mM</u>
Given:
Acetic Acid/Sodium Acetate buffer of pH = 5.0
Let HA = acetic acid
A- = sodium acetate
Total concentration [HA] + [A-] = 250 mM ------(1)
pKa(acetic acid) = 4.75
Based on Henderson-Hasselbalch equation
pH = pKa + log[A-]/[HA]
[A-]/[HA] = 10^(pH-pKa) = 10^(5-4.75) = 10^0.25 = 1.77
[A-] = 1.77[HA] -----(2)
From (1) and (2)
[HA] + 1.77[HA] = 250 mM
[HA] = 250/2.77 = 90.25 mM
[A-] = 1.77(90.25) = 159.74 mM
Answer:
2.67 × 10⁻²
Explanation:
Equation for the reaction is expressed as:
CaCrO₄(s) ⇄ Ca₂⁺(aq) + CrO₂⁻⁴(aq)
Given that:
Kc=7.1×10⁻⁴
Kc= ![[Ca^{2+}][CrO^{2-}_4]](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5BCrO%5E%7B2-%7D_4%5D)
Kc= [x][x]
Kc= [x²]
7.1×10⁻⁴ = [x²]
x = 
x = 0.0267
x = 
Answer:
In the unfolded polypeptide, there are ordered solvation shells of water around the protein
groups. The number of water molecules involved in such ordered shells is reduced when the protein
folds, resulting in higher entropy. Hence, the lower free energy of the native conformation.
Explanation: