The reaction will shift toward the reactants if the volume is cut in half.
<h3 /><h3>Reactants </h3>
The initial components of a chemical reaction are called reactants. Chemical bonds between reactants are broken and new ones are created in order to create products. Reactants and products are listed on the left and right sides, respectively, of the arrow in a chemical equation.
Substances on both sides of an arrow that points left and right are both reactants and products in a chemical process (the reaction proceeds in both directions simultaneously). A chemical equation that is balanced has the same amount of atoms of each element in the reactants and products. Around 1900–1920 is when the word "reactant" was first used. There are instances when the word "reagent" is interchangeable.
Learn more about reactants here:
brainly.com/question/17096236
#SPJ4
First, we have to see how K2O behaves when it is dissolved in water:
K2O + H20 = 2 KOH
According to reaction K2O has base properties, so it forms a hydroxide in water.
For the reaction next relation follows:
c(KOH) : c(K2O) = 1 : 2
So,
c(KOH)= 2 x c(K2O)= 2 x 0.005 = 0.01 M = c(OH⁻)
Now we can calculate pH:
pOH= -log c(OH⁻) = -log 0.01 = 2
pH= 14-2 = 12
Answer: There are now 2.07 moles of gas in the flask.
Explanation:
P= Pressure of the gas = 697 mmHg = 0.92 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = ?
n = number of moles = 1.9
T = Temperature of the gas = 21°C=(21+273)K= 294 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
When more gas is added to the flask. The new pressure is 775 mm Hg and the temperature is now 26 °C, but the volume remains same.Thus again using ideal gas equation to find number of moles.
P= Pressure of the gas = 775 mmHg = 1.02 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = 49.8 L
n = number of moles = ?
T = Temperature of the gas = 26°C=(26+273)K= 299 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
Thus the now the container contains 2.07 moles.
The mass percentage is 15.1465%.