The way you want to find the percent composition would be by breaking down the problem like so:
K= atomic mass of K which is 39.098
Mn = atomic mass of Mn which is 54.938
O= atomic mass of o which is 15.999
Then you want to add 39.098+ 54.938+ 15.999 and you get 110.035 which is the molar mass for KMnO
Then you want to take each molar mass and then divide it 110.035 and multiply by 100
Ex. K = 39.098/ 110.035 and the multiply what you get by a 100
You do this for the other elements as well good luck!
Answer:The equilibrium constant for a given reaction is [concentration of products]/[concentration of reactants].
Explanation:
Equilibrium constant=[concentration of products]/[concentration of reactants]
The concentration of reactant molecules is maximum at time 0 and it decreases as the reaction proceeds, The concentration of product molecules increases.At equilibrium the concentration of reactants and products are equal.
All the changes would occur in accordance with the LeChateliers principle.
For the given reaction the following changes would occur:
a When CO is removed from the reaction mixture so the reaction would shift towards right that is in forward direction as we are decreasing the concentration of CO so the system would try to increase the concentration of CO and that can happen by more production of CO.
b Since the above reaction is an endothermic reaction so when we would be adding heat to the system that is when we would increase the temperature the reaction would shift forwards as more heat energy is absorbed by reactants to form more products.
c When more CO₂ is added so more amount of reactants are added to the system so the system would try to decrease the amount of reactants that is CO₂ and hence more amount of products would be formed.The reaction would shift in forward direction.
d Since this reaction is endothermic in nature so when we remove the heat from reaction hence even less amount of heat is present in the system and so the reaction shift in backward direction as the reaction cannot proceed without enough amount of heat.
Answer:
Yes
Explanation:
Yes, A substance can be a lewis acid without being a Bronsted-Lowery acid because there are some substances which cannot donate protons(Bronsted-Lowery acid) but can accept a pair of electron.
<u><em>For Example:</em></u>
Let us take the example of BF₃
BF₃ contains no proton so it is not a Bronsted Lowery Acid
However, BF₃ has an incomplete octet with 6 electrons. It needs an electron pair to complete its octet. It accepts a pair of electron to become a Lewis Acid
2.91 mol Al * ( 26.982 g Al / 1 mol Al) = 78.518 grams