A spinning top is the answer
It is stored in the bonds between atoms
Answer:
The velocity of the wave is 12.5 m/s
Explanation:
The given parameters are;
he frequency of the tuning fork, f = 250 Hz
The distance between successive crests of the wave formed, λ = 5 cm = 0.05 m
The velocity of a wave, v = f × λ
Where;
f = The frequency of the wave
λ = The wavelength of the wave - The distance between crests =
Substituting the known values gives;
v = 250 Hz × 0.05 m = 12.5 m/s
The velocity of the wave, v = 12.5 m/s.
A bodybuilder deadlifts 215 kg to a height of 0.90 m. If he deadlifts this weight 10 times in 45 s, the power exerted is 421 W (b.)
<h3>What is power?</h3>
In physics, power (P) is the work (W) done over a period of time.
- Step 1. Calculate the work done by the bodybuilder each time.
The bodybuilder lifts a 215 kg (m) weight to a height of 0.90 m (h). Being the gravity (g) of 9.81 m/s², we can calculate the work done in each lift using the following expression.
W = m × g × h = 215 kg × 9.81 m/s² × 0.90 m = 1.9 × 10³ N
- Step 2. Calculate the work done by the bodybuilder over 10 times.
W = 10 × 1.9 × 10³ N = 1.9 × 10⁴ N
- Step 3. Calculate the power exerted by the bodybuilder.
The bodybuilder does a work of 1.9 × 10⁴ N in a 45-s span.
P = 1.9 × 10⁴ N/45 s = 421 W
A bodybuilder deadlifts 215 kg to a height of 0.90 m. If he deadlifts this weight 10 times in 45 s, the power exerted is 421 W (b.)
Learn more about power here: brainly.com/question/911620
#SPJ1
Complete Question:
Two 3.0µC charges lie on the x-axis, one at the origin and the other at 2.0m. A third point is located at 6.0m. What is the potential at this third point relative to infinity? (The value of k is 9.0*10^9 N.m^2/C^2)
Answer:
The potential due to these charges is 11250 V
Explanation:
Potential V is given as;

where;
K is coulomb's constant = 9x10⁹ N.m²/C²
r is the distance of the charge
q is the magnitude of the charge
The first charge located at the origin, is 6.0 m from the third charge; the potential at this point is:

The second charge located at 2.0 m, is 4.0 m from the third charge; the potential at this point is:

Total potential due to this charges = 4500 V + 6750 V = 11250 V