<h3><u>Answer;</u></h3>
Higher velocity of particles
<h3><u>Explanation;</u></h3>
The diffusion rate is determined by a variety of factors which includes;
- Temperature such that the higher the temperature, the more kinetic energy the particles will have, so they will move and mix more quickly and the diffusion rate will be high.
- Concentration gradient such that the greater the difference in concentration, the quicker the rate of diffusion.
- Higher velocity of particles increases the diffusion rate as this means more kinetic energy by the particles and hence the particles will mix and move faster, thus higher diffusion rate.
Answer: 2.17mol/L
Explanation:
C=n/V
n: 0.217mol
V: 100.0mL
1. Convert mL to L (100.0mL/1000 = 0.01L)
2. Put numbers into equation (C= 0.217/0.01L)
3. Molarity is 2.17mol/L
The acid dissociation constant of benzoic acid is 6.5 x 10^-5. Therefore, the pH of the benzoic acid solution prior to adding sodium benzoate is:
pH = -log[Ka]
pH = -log (6.5 x 10^-5)
pH = 4.19
The pH of the benzoic acid solution is 4.19 which is acidic, but a weak acid.
The atomic mass of Europium is 152 amu
Work:
151(0.4803) = 72.52 amu
153(0.5197) = 79.5 amu
72.5 + 79.5 = 152 amu
The answer would be 0.25 g/mL.
I determined the density by dividing the mass by the volume which gives you the density. D = mass/volume.
<span>6 g / 24 mL = 0.25 g/mL
</span>