Answer:
9.25 x 10^-4 Nm
Explanation:
number of turns, N = 8
major axis = 40 cm
semi major axis, a = 20 cm = 0.2 m
minor axis = 30 cm
semi minor axis, b = 15 cm = 0.15 m
current, i = 6.2 A
Magnetic field, B = 1.98 x 10^-4 T
Angle between the normal and the magnetic field is 90°.
Torque is given by
τ = N i A B SinФ
Where, A be the area of the coil.
Area of ellipse, A = π ab = 3.14 x 0.20 x 0.15 = 0.0942 m²
τ = 8 x 6.20 x 0.0942 x 1.98 x 10^-4 x Sin 90°
τ = 9.25 x 10^-4 Nm
thus, the torque is 9.25 x 10^-4 Nm.
K=1400*V^2/2
K=20000*25^2/2. => 1400*V^2/2=20000*25^2/2 <=> 1400*V^2=20000*25^2
14*V^2=200*225
v^2=100*225/7
v=250/7^(1/2)
Answer: 250*7^(1/2)/7
Answer:
A current can be induced in a conducting loop if it is exposed to a changing magnetic field. ... In other words, if the applied magnetic field is increasing, the current in the wire will flow in such a way that the magnetic field that it generates around the wire will decrease the applied magnetic field.
Explanation:
Answer:
That when you leave the ice setting without foil, it melts slower. When you put the piece of ice in the foil it melts faster than just letting it set without foil. I really hope this helps.
Explanation: