4.48 mol Cl2. A reaction that produces 0.35 kg of BCl3 will use 4.48 mol of Cl2.
(a) The <em>balanced chemical equation </em>is
2B + 3Cl2 → 2BCl3
(b) Convert kilograms of BCl3 to moles of BCl3
MM: B = 10.81; Cl = 35.45; BCl3 = 117.16
Moles of BCl3 = 350 g BCl3 x (1 mol BCl3/117.16 g BCl3) = 2.987 mol BCl3
(c) Use the <em>molar ratio</em> of Cl2:BCl3 to calculate the moles of Cl2.
Moles of Cl2 = 2.987 mol BCl3 x (3 mol Cl2/2 mol BCl3) = 4.48 mol Cl2
They are pumped across the mitochondrial inner membrane against their concentration gradient (to where their concentration is high); as the H+ ions flow back to where their concentration is low, they drive ATP synthase to form ATP
Answer:
The answer will be 2.98K
Explanation:
Using the formula:
Q = mc∆T
Q= 5,800 (heat in joules)
m= convert 15.2kg to g which is 15200g (mass in grams)
c= 0.128 J/g °c (Specific heat capacity)
∆T= what we need to find (temperature change)
5800J = 15200g x 0.128 x ∆T
= 2.98K
The alveoli are surrounded<span> by tiny blood vessels, called capillaries. The </span>alveoli<span> and capillaries both have very thin walls, which allow the oxygen to pass from the </span>alveoli<span>to the blood. The capillaries then connect to larger blood vessels, called veins, which bring the oxygenated blood from the lungs to the heart.</span>