Answer:
H₂SO₄ will be the limiting reagent.
Explanation:
The balanced reaction is:
2 Al(OH)₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 6 H₂O
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
To determine the limiting reagent, it is possible to use the reaction stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction).
You can use a simple rule of three as follows: if by stoichiometry 2 moles of Al(OH)₃ reacts with 3 moles of H₂SO₄, how much moles of H₂SO₄ will be needed if 0.4 moles of Al(OH)₃ react?

moles of H₂SO₄= 0.6 moles
But 0.6 moles of H₂SO₄ are not available, 0.40 moles are available. Since you have less moles than you need to react with 0.4 moles of Al(OH)₃, H₂SO₄ will be the limiting reagent.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Lattice energy is the key to the formation of a salt because without that energy it wouldn't form, it makes the overall process spontaneous
It would be 23.46, since the next number is a 5 so we can round up.
Significant figures are:
ANY number that is not 0
Any 0 between two nonzero digits
Any 0 following a decimal (i.e 1.50)
<span>In the question ' which of the following most likely require intermolecular force', options A and C given are definitely not the correct answers. Among the items listed in the questions, the one that will most likely required an intermolecular force is a rock maintaing its solid shape. Thus, the correct option is B. Intermolecular forces are forces which maintain chemical interactions between molecules of a particular susbstance and other types of paticles that may be present in the substance. Rocks are made up of differet particles and their structures are held together by different types of intermolecular forces depending on the types of particles present in the rock. Intermolecular forces can only occur among molecules and other particles in a compound that is why the other two options are wrong. Intermolecular force can either be attractive or repulsive. Attraction occurs between molecules of opposite charges, that is, positive and negative charges while repulsion occurs between particles of like charges, for intstance, between positive and positive charges. The Intermolecular forces that exist in a compound maintaings the integrity of the structure of that compound. Intermolecular forces in compounds exist in different forms, we have electrovalent bonds, covalent bonds, hydrogen bond, vander waals forces, etc. The type of molecules that exist in a compound will determine the type of intermolecular forces that will exist among the molecules of that substance. Electrovalent bonds are the strongest type of intermolecular force and it normally exist between metals and non metals. Covalent bonds involved sharing of electrons among the participating elements while vander waals forces are the weakest form of intermolecular forces. Forces are often required to break intermolecular forces apart. Breaking the intermolecular forces apart will destroy the structure of the substance inlvolved.</span>
Covalent bonds are formed when electrons are shared between elements that are nonmetals. The ammonium ion, NH+4 , would have covalent bonds because both nitrogen and hydrogen are nonmetals. ... So, the bond between this particular hydrogen atom and the central nitrogen is a dative covalent bond.