Answer:
NaCl + AgF → NaF + AgCl
Explanation:
A double replacement reaction is a type of chemical reaction that occurs when two reactants exchange cations or anions to yield two new products.
From all the reactions given ,
- 2Na + Cl₂ → 2NaCl is an example of combination reaction because two or more reactants (Na & Cl₂) react with each other to form a single product (NaCl)
- H₂SO₃ → H₂O + SO₂ is an example of decomposition reaction because a single reactant (H₂SO₃) breaks down into two or more products (H₂O & SO₂).
- 2K + 2H₂O → 2KOH + H₂ is an example of displacement reaction because a highly reactive element (K) displaces a least reactive element (H) from its compound (H₂O).
- NaCl + AgF → NaF + AgCl is an example of double replacement reaction because there's an exchange between Cations (
&
) and Anions (
&
).
Answer:
Noble gas Electronic configuration of arsenic:
As₃₃ = [Ar] 3d¹⁰ 4s² 4p³
Explanation:
Arsenic is metalloid.
Its atomic number is 33.
Its atomic mass is 75 amu.
Its symbol is As.
It is usually present in combine with sulfur and metals.
it is used in bronzing.
It is also used for hardening.
Electronic configuration:
As₃₃ = Is² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p³
Noble gas Electronic configuration:
As₃₃ = [Ar] 3d¹⁰ 4s² 4p³
Noble gas electronic configuration is shortest electronic configuration by using the noble gas elements full octet electronic configuration.
Answer: the ability to be dissolved, especially in water.
Explanation: I think the answer you've picked is right
Hope this helps
<h3>Question:</h3>
•Why do you feel the force of Earth's gravity?
Answer:
•Earth's gravity comes from all its mass. All its mass makes a combined gravitational pull on all the mass in your body. That's what gives you weight. And if you were on a planet with less mass than Earth, you would weigh less than you do here.
Explanation:
#Let's Study
#I Hope It's Help
#Keep On Learning
#Carry On Learning
6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.