There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?
Answer:

Explanation:
The constant speed means that ball is not experimenting acceleration. This elements is modelled by using the following equation of equilibrium:


Now, the exerted force is:

The volume of a sphere is:



Lastly, the force is calculated:


Before anyone can help you, if this is a multiple choice question you must provide the answers.<span />
Answer:
Kinetic
Explanation:
Potienal is building up power where kinetic means moving
Answer:
42.58kg
Explanation:
By Newton's second law, F = ma.
F is the force being applied, in this case 112N. a is the acceleration, in this case 2.63 m/s^2.
Thus, with some simple algebraic manipulation, we get the mass to equal:
m = F/a = 112N / 2.63 m/s^2 = 42.58kg