Answer:
A = 2.36m/s
B = 3.71m/s²
C = 29.61m/s2
Explanation:
First, we convert the diameter of the ride from ft to m
10ft = 3m
Speed of the rider is the
v = circumference of the circle divided by time of rotation
v = [2π(D/2)]/T
v = [2π(3/2)]/4
v = 3π/4
v = 2.36m/s
Radial acceleration can also be found as a = v²/r
Where v = speed of the rider
r = radius of the ride
a = 2.36²/1.5
a = 3.71m/s²
If the time of revolution is halved, then radial acceleration is
A = 4π²R/T²
A = (4 * π² * 3)/2²
A = 118.44/4
A = 29.61m/s²
Well Inertia means something wants to stay in place, and in reality that coin wants to stay in one place, If you placed it on an index card on a cup, and SLOWLY pulled it, it wouldn't be fast enough to overcome that force, if you pulled it quickly that coin would stay in place and drop into the cup.
Answer:
your answer is: electron → carbon atom → quantum dot → E. coli bacteria cell → comma
Explanation:
The floor exerts 20 N of force on the chair
Explanation:
We can answer this question by using Newton's third law, which states that:
<em>"When an object A exerts a force (called action) on an object B, object B exerts an equal and opposite force (called reaction) on object A"</em>
In this problem, we can identify:
- Object A as the chair
- Object B as the floor
This means that the force of 20 N exerted by the chair on the floor is the action, and so the force exerted by the floor on the chair is the reaction. Newton's third law states that these two forces are equal and opposite: therefore, the force exerted by the floor on the chair is also 20 N, but in the opposite direction.
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly