Answer : The final temperature of gas is 266.12 K
Explanation :
According to the Joule-Thomson experiment, it states that when a gas is expanded adiabatically from higher pressure region to lower pressure region, the change in temperature with respect to change in pressure at constant enthalpy is known as Joule-Thomson coefficient.
The formula will be:

or,

As per question the formula will be:
.........(1)
where,
= Joule-Thomson coefficient of the gas = 
= initial temperature = 
= final temperature = ?
= initial pressure = 200.0 atm
= final pressure = 0.95 atm
Now put all the given values in the above equation 1, we get:


Therefore, the final temperature of gas is 266.12 K
Answer:
The new distance is d = 0.447 d₀
Explanation:
The electric out is given by Coulomb's Law
F = k q₁ q₂ / r²
This electric force is in balance with tension.
We reduce the charge of sphere B to 1/5 of its initial value (
=q₂ = q₂ / 5) than new distance (d = n d₀)
dat
q₁ = 
q₂ = 
r = d₀
In order for the deviation to maintain the electric force it should not change, so we apply the Coulomb equation for the two points
F = k q₁ q₂ / d₀²
F = k q₁ (q₂ / 5) / (n d₀)²
.k q₁ q₂ / d₀² = q₁ q₂ / (5 n² d₀²)
5 n² = 1
n = √ 1/5
n = 0.447
The new distance is
d = 0.447 d₀
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find
The distance from the centre of the rule at which a 2N weight must be suspend from A is 29.3 cm.
<h3>Distance from the center of the meter rule</h3>
The distance from the centre of the rule at which a 2N weight must be suspend from A is calculated as follows;
-----------------------------------------------------------------
20 A (30 - x)↓ x ↓ 20 cm B 30 cm
2N 0.9N
Let the center of the meter rule = 50 cm
take moment about the center;
2(30 - x) + 0.9(x)(30 - x) = 0.9(20)
(30 - x)(2 + 0.9x) = 18
60 + 27x - 2x - 0.9x² = 18
60 + 25x - 0.9x² = 18
0.9x² - 25x - 42 = 0
x = 29.3 cm
Thus, the distance from the centre of the rule at which a 2N weight must be suspend from A is 29.3 cm.
Learn more about brainly.com/question/874205 here:
#SPJ1