To answer this question a balanced chemical equation is necessary. The correct equation is: N2 + 3H2 = 2NH3
From this equation, one mole of nitrogen react with 3 moles of hydrogen to give 2 moles of ammonia.
Therefore, the mole ratio of NH3 to N2 is 2:1
Answer:
The answer is
<h2>5.0 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 35 g
volume = 7 cm³
The density is

We have the final answer as
<h3>5.0 g/cm³</h3>
Hope this helps you
<span>1) Use the balanced chemical equation to find the molar ratios (proportions) of each product and reactant.
3N2H4(l)→4NH3(g)+N2(g)
=> molar ratios: 3 mol N2H4 : 4 mol NH3
2) Use the product to reactant molar ratio, and the quantity of reactant to determine the yield:
2.0 mol N2H4 * [4mol NH3] / [3mol N2H4] = 2*4/3 mol NH3 = 2.7 mol NH3
Answer: 2.7 mol
</span>
Answer:
The compound is an <em>alkali</em>
Explanation:
Although acids and bases in solution can conduct electricity due to the presence of free ions available to carry charges, bases or alkalis turn phenolphthalein indicator pink; as opposed to acids which give colourless test on the indicator.
The anayte compound is therefore a concentrated alakli solution.
Answer:
Explanation has been given below
Explanation:
- Attachment of -Cl group at ortho position to acetamido group can be explained in terms of hydrogen bonding formation.
- A hydrogen bonding can be formed between proton attached with N atom in acetamido group and Cl atom at ortho position. This leads to a formation of a stable 5-membered ring structure.
- Hence ortho substitution by Cl is favorable process.
- There is no hydrogen bonding possible between Br and Cl atom in ortho position. Therefore Cl prefers para position to avoid steric hindrance.
- Structure of hydrogen bonded structure has been shown below.