-Synodic period is the period of celestial bodies observed on the moving planet(mostly earth)
Sideral period is the period comparing to the fixed stars without motion of the earth involved.
(I will explain the second question with an example, so it's easier to understand)
-For Sideral month for example of the moon it cactually complete one revolution in around 27.3 days.
However, since the earth moves, for us it took some more time to see the moon the same as before (fullmoon to fullmoon) again. That make synodic month of the moon to be around 29.5 days.
Oxygen... Hope this Warner helps
Explanation:
A simple way to state Newton's first law is:
For every action force, there is a reaction force which is equal in magnitude and opposite in direction.
Answer: Air
Explanation: Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Air and hydrogen have nearly the same elastic properties, but the density of hydrogen is less than that of air. Sound thus travels faster (about 4 times as fast) in hydrogen than in air.
Answer and explanation;
In 1670 Gabriel Mouton, Vicar of St. Paul’s Church and an astronomer proposed the swing length of a pendulum with a frequency of one beat per second as the unit of length.
In 1791 the Commission of the French Academy of Sciences proposed the name meter to the unit of length. It would equal one tens-millionth of the distance from the North Pole to the equator along the meridian through Paris.It is realistically represented by the distance between two marks on an iron bar kept in Paris.
In 1889 the 1st General Conference on Weights and Measures define the meter as the distance between two lines on a standard bar that made of an alloy of 90%platinum with 10%iridium.
In 1960 the meter was redefined as 1650763.73 wavelengths of orange-red light, in a vacuum, produced by burning the element krypton (Kr-86).
In 1984 the Geneva Conference on Weights and Measures has defined the meter as the distance light travels, in a vacuum, in 1299792458⁄ seconds with time measured by a cesium-133 atomic clock which emits pulses of radiation at very rapid, regular intervals.