Answer:
The correct answer would be 200m
Explanation:
20x10=200
the previous answer is incorect from the other user.
Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
Answer:
The Normal and Gravitational Force
Explanation:
The normal force pushes up and is between the ground and the scale. The gravitational force is the force exerted on the ground.
Answer:
P = 251, 3 W
Explanation:
The intensity is defined as the power emitted per unit area
I = P / A
Since sound is distributed in all directions spherical shape, the area of a sphere is
A = 4π r²
let's clear the power and replace
P = I A
P = I (4π r²)
let's calculate
P = 5.00 (4π 2²)
P = 251, 3 W
Answer:
9155 years old
Explanation:
We use the following expression for the decay of a substance:

So we first estimate the value of k knowing that the half-life of the C14 is 5730 years:

so, now we can estimate the age of the artifact by solving for"t" in the equation:

which we can round to 9155 years old.