Na₂S(aq) + Cd(NO₃)₂(aq) = CdS(s) + 2NaNO₃(aq)
v=25.00 mL
c=0.0100 mmol/mL
M(Na₂S)=78.046 mg/mmol
n(Na₂S)=n{Cd(NO₃)₂}=cv
m(Na₂S)=M(Na₂S)n(Na₂S)=M(Na₂S)cv
m(Na₂S)=78.046*0.0100*25.00≈19.5 mg
I would say the answer is... <span>C. AgNO3 + LiOH AgOH + LiNO3
</span>
Good luck!!
Answer:
d. Sum of product enthalpies minus the sum of reactant enthalpies
Explanation:
The standard enthalpy change of a reaction (ΔH°rxn) can be calculated using the following expression:
ΔH°rxn = ∑n(products) × ΔH°f(products) - ∑n(reactants) × ΔH°f(reactants)
where,
ni are the moles of products and reactants
ΔH°f(i) are the standard enthalpies of formation of products and reactants
Answer:
See explanation
Explanation:
A titration involves the addition of a titrant to an analyte solution. It is a method of volumetric analysis.
When a particular volume of titrant is added, the colour changes to signal the end point of the reaction.
The point at which the colour changes is called the equivalence point. This is the point at which the amount of titrant added is just enough to completely neutralize the analyte solution.
Hence the volume NaOH that needs to be added to the beaker containing HCl to cause a colour change is the volume of NaOH that is just enough to completely neutralize the HCl solution.
<span>side-by-side alignment of homologous chromosomes</span>