The answer is: mass is 40.17 kilograms.
d = 0.758 g/mL; density of fuel.
V = 14.0 gal; volume.
A gallon is a unit of volume in both the US customary and imperial systems of measurement. The US gallon is defined as 231 cubic inches (3.785 liters).
1 gal = 3785.41 mL.
V = 14 gal · 3785.41 mL:
V = 52995.74 mL.
m = 52995.74 mL · 0.758 g/mL.
m = 40170.77 g; mass of fuel.
m = 40170.77 g ÷ 1000 g/kg.
m = 40.17 kg.
The answer is: D.unstable nuclei emitting high-energy particles as they formed more stable compositions.
Those high-energy particles are alpha particles
, beta particles
, gamma radiation.
For example, the decay chain of ²³⁸U is called the uranium series.
Decay start with U-238 and ends with Pb-206. There are several alpha and beta minus decays.
Antoine Henri Becquerel (1852 – 1908) was a French physicist and the first person to discover evidence of radioactivity.
Becquerel wrapped fluorescing crystal (uranium salt potassium uranyl sulfate) in a cloth, along with the photographic plate and a copper Maltese cross.
Several days later, he discovered that a image of the cross appeared on the plate.
The uranium salt was emitting radiation.
Because of this discovery, Becquerel won a Nobel Prize for Physics in 1903, which he shared with Marie Curie and Pierre Curie.
We have a solution of NaOH and H₂CO₃
First, NaOH will dissociate into Na⁺ and OH⁻ ions
The Na⁺ ion will substitute one of the Hydrogen atoms on H₂CO₃ to form NaHCO₃
The H⁺ released from the substitution will bond with the OH⁻ ion to form a water molecule
If there were to be another NaOH molecule, a similar substitution will take place, substituting the second hydrogen from H₂CO₃ as well to form Na₂CO₃
Answer:
The final temperature is 39.58 degree Celsius
Explanation:
As we know
Q = m * c * change in temperature
Specific heat of water (c) = 4.2 joules per gram per Celsius degree
Substituting the given values we get -
5750 = 335 * 4.2 * (X - 35.5)
X = 39.58 degree Celsius
Answer:
Metalloids are metallic-looking brittle solids that are either semiconductors or exist in semiconducting forms, and have amphoteric or weakly acidic oxides. Typical nonmetals have a dull, coloured or colourless appearance; are brittle when solid; are poor conductors of heat and electricity; and have acidic oxides.
Explanation: