Hello,
Your questions states:
During a change of state, the temperature of a substance _____?
In which you gave us some choices:
A. decreases if the arrangement of particles in the substance changes.
B. remains constant until the change of state is complete.
C. increases if the kinetic energy of the particles in the substance increases.
D. increases during melting and vaporization and decreases during freezing and condensation.
Your answer would be:
B. remains constant until the change of state is complete.
Your explanation/Reasoning:
It absorbs the energy, then after the phase changes it then increases the temperature all over again.
Have a nice day:)
Hope this helps!
~Rendorforestmusic
Answer:
Carbon has 4 valence electrons (electrons that are used in bonding), and therefore it can make 4 bonds which is the most one can (other than some exceptions, but in general it is the most). It wants to make 4 bonds so it can reach a full octet of 8 elections, hence the rule of 8.
Explanation:
The empirical formula CH₂O has a mass [(12 × 1) + (1 × 2) + (16 × 1)] = 30 g/mol
If the empirical formula is 30 g/mol,
and the molecular formula is 60 g/mol
Then the multiple is = 60 g/mol ÷ 30 g/mol
= 2
Therefor the molecular formula is 2(CH₂O) = C₂H₄O₂ (OPTION 2)
The substance that conducts electricity is
dissolved in water.
So, option A is correct one.
When the sodium chloride dissolve in water , the sodium atoms and chlorine atoms separates under the presence of water molecules and exist as sodium cation and chloride anion . Now , they are free to move around in the water as positively and negatively charged ions . This separation of charge allows the solution to conduct electricity.
The solid
and solid sugar does not conduct electricity because it is not dissolve in water . Similarly, sugar dissolved in water does not conduct electricity .
to learn more about conduct electricity.
brainly.com/question/1458220
#SPJ4
Answer:
10.85 g of water
Explanation:
First we write the balanced chemical equation

Then we calculate the number of moles of nitric acid produced
n(HNO3) = 
According to the balanced equation, water needed in moles is always half the number of moles of HNO3 produced. So since we will produce 1.2044 mol of HNO3, we will need 0.6022 mol of water. Now to calculate what mass that is:
mass(water)=number of moles*molar mass=0.6022mol*18.02g/mol=10.85g