1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikitadnepr [17]
3 years ago
6

The ratio of 5 rupee notes to 10 rupee notes in a purse is 3 : 4. There are 77 notes in the purse. How much money is there in th

e purse?
Mathematics
1 answer:
Norma-Jean [14]3 years ago
4 0

Answer:

605 rupees

Step-by-step explanation:

add the parts of the ratio 3 + 4 = 7

divide the number of notes by 7 to find one part of the ratio

\frac{77}{7} = 11 ← 1 part of the ratio

3 parts = 3 × 11 = 33 ← number of 5 rupee notes

4 parts = 4 × 11 = 44 ← number of 10 rupee notes

Amount of money = (33 × 5 ) + (44 × 10) = 165 + 440 = 605 rupees



You might be interested in
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Can someone help me asap
Alenkasestr [34]

Answer:

I hope this is helpful

Step-by-step explanation:

mark brainlest pls

4 0
2 years ago
What’s the correct answer for this question?
Maksim231197 [3]

Answer

C. 14

Explanation

The area of triangle = 1/2(base)(height)

The height:

the height is the distance from point (2,-3) perpendicular to the base intersecting it at point (2,1)

the height is then the distance between the 2 points = 4

The base:

the base is the distance between points (7,1)and (0,1) = 7

The area:

the area = 1/2 x 4 x 7 = 28/2 = 14 units²

8 0
3 years ago
Over a 12 hour period the students estimate that 2,400 bees will leave the hive. How many bees should they expect to travel west
vazorg [7]
240 divide it 

2400/10

hope this helps

8 0
3 years ago
Read 2 more answers
What is the solution to the following equation x²+3x+7=0
katrin [286]

Answer:

x =(3-√37)/2=-1.541

x =(3+√37)/2= 4.541

Step-by-step explanation:

to long to explain sorry but trust me

8 0
3 years ago
Read 2 more answers
Other questions:
  • A parabola opens to the left. Which could be the equation of the parabola?
    11·2 answers
  • Find the unit rate. Calvin scored 36 points in 6 games.
    14·1 answer
  • 18.2+c &lt;18.2 c=0 3,6,9
    9·1 answer
  • The angles of a pentagon are x, x − 5 0 , x + 100 , 2x + 150and 2x + 300 . Find all the angles.
    5·1 answer
  • What is the volume of a right circular cone with a radius of 3 units and a height of 6 units?​ pleas help asap
    14·1 answer
  • The population of a certain town was 10,000 in 1990. The rate of change of the population, measured in people per year, is model
    7·1 answer
  • 0.81
    12·1 answer
  • How to solve this equation?<br> X^2=20
    15·2 answers
  • I need help on this one too please
    15·1 answer
  • A rectangle is divided into 4 equal rows with 4 squares in each row. mark says 1 square is 1/4 of the whole rectangle. kareem sa
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!