I think answer should be d. Please give me brainlest let me know if it’s correct or not okay thanks bye
Answer:
Explanation:
heat released by the solution
= 120 x 3.18 x ( 25 - 14 )
= 4197.6 J
= 4.1976 kJ
This is the heat gain by the salt
so enthalpy change = + 4.1976 kJ
because there is increase in enthalpy
It is endothermic process .
Answer:
- The standard form of a chemical element is the natural mixture of several isotopes of the same element, which is atoms with the same number of protons but different number of neutrons, while an isotope is a particular kind of atom with a definite number of neutrons.
Explanation:
A <em>chemical element</em> is a pure substance formed by atoms with the same atomic number (number of protons). This is because it is the number of protons what identifies an element.
For example: oxygen is a chemical element, so oxygen is formed by only atoms of oxygen, and the atomic number of those atoms is 8, because every oxygen atom has 8 protons.
Nevertheless, some atoms of oxygen, may have different number of neutrons. Isotopes are different kind of atoms of the same element, which only differ in the number of neutrons. So, some atoms of oxygen will have 8 neutrons, other 9 neutrons, and other 10 neutrons (those are the stable isotopes of oxygen).
That difference in neutrons, is generally accepted that, does not modifiy substantially the chemical properties of the element, but the mass number. So, the isotopes with more neutrons wil be heavier, and the isotopes with less neutrons will be lighter.
- Mass number = number of protons + number of neutrons.
In general a chemical element is formed by a mixutre of isotopes of the same element.
Answer : The value of 'R' is 
Solution : Given,
At STP conditions,
Pressure = 1 atm
Temperature = 273 K
Number of moles = 1 mole
Volume = 22.4 L
Formula used : 
where,
R = Gas constant
P = pressure of gas
T = temperature of gas
V = volume of gas
n = number of moles of gas
Now put all the given values in this formula, we get the values of 'R'.


Therefore, the value of 'R' is
.
The moles of Ba(OH)2 that is required to react with 117 HBr is calculated as below
find the moles of HBr used
mass/ molar mass = 117 g/ 80.9 g/mol = 1.446 moles
write the reacting equation
Ba(OH)2 + 2 HBr = BaBr2 + 2 H2O
by use of mole ratio of Ba(OH)2 : HBr which is 1:2 the moles of Ba(OH)2 is therefore
= 1.446 moles x1/2 = 0.723 moles of Ba(OH)2