Answer: 0.20 M
Explanation:
According to the dilution law,

where,
= molarity of stock solution = 1.40 M
= volume of stock solution = 72.0 ml
= molarity of diluted solution = m
= volume of diluted solution = 248 ml


Now 124 mL portion of this prepared solution is diluted by adding 133 mL of water.
According to the dilution law,

where,
= molarity of stock solution = 0.41 M
= volume of stock solution = 124 ml
= molarity of diluted solution = m
= volume of diluted solution = (124 +133) ml = 257 ml


Thus the final concentration of the solution is 0.20 M.