The –OH+ group is most acidic proton in ln-OH as shown in figure (a). The proton is circled in the figure.
The stabilisation of the conjugate base produced is stabilises due to resonance factor. The possible resonance structures are shown in figure (b).
The acidity of a protonated molecule depends upon the stabilisation of the conjugate base produced upon deprotonation. The conjugate base of ln-OH is shown in figure (a).
The possible resonance structures are shown in figure (b). As the number of resonance structures of the conjugate base increases the stabilisation increases. Here the unstable quinoid (unstable) form get benzenoid (highly stable) form due to the resonance which make the conjugate base highly stabilise.
Thus the most acidic proton is assigned in ln-OH and the stability of the conjugate base is explained.
The mass of water in the tank, given the data from the question is 549594 g
<h3> Description of mole </h3>
The mole of a substance is related to it's mass and molar mass according to the following equation:
Mole = mass / molar mass
<h3>How to determine the mass of water in the tank</h3>
From the question given above, the following data were obtained:
- Mole of water = 30533 moles
- Molar mass of water = 18 g/mol
- Mass of water = ?
The mass of the water can be obtained as follow:
Mass = mole × molar mass
Mass of water = 30533 × 18
Mass of water = 549594 g
Learn more about mole:
brainly.com/question/13314627
#SPJ1
<span>Yes, the material will float because it has a lower density than that of water.
A material will float if it has a lower density than that of the liquid it's placed in. So let's first calculate the density of this new material.
Density is simply mass per volume, so doing the division.
2.0 g / 3.0 cm^3 = 0.67 g/cm^3
The density of water is 1.0 g/cm^3 and since the density of the new material is less at 0.67 g/cm^3 it will float.</span>
Answer:
M = 3.0 mol/L.
Explanation:
- We can calculate the molarity of a solution using the relation:
<em>M = (mass x 1000) / (molar mass x V)</em>
- M is the molarity "number of moles of solute per 1.0 L of the solution.
- mass is the mass of the solute (g) (m = 87.75 g of NaCl).
- molar mass of NaCl = 58.44 g/mol.
- V is the volume of the solution (ml) (V = 500.0 ml).
∴ M = (mass x 1000) / (molar mass x V) = (87.75 g x 1000) / (58.44 g/mol x 500.0 ml) = 3.0 mol/L.
Answer: S2O8
Explanation: I dunno i just saw the answer somewhere