Answer:
summer
Explanation:
Notice the higher density of the rays of the sun hitting straight the latitudes below the equator.
Answer:
The time where the avergae speed equals the instaneous speed is T/2
Explanation:
The velocity of the car is:
v(t) = v0 + at
Where v0 is the initial speed and a is the constant acceleration.
Let's find the average speed. This is given integrating the velocity from 0 to T and dividing by T:

v_ave = v0+a(T/2)
We can esaily note that when <u><em>t=T/2</em></u><u><em> </em></u>
v(T/2)=v_ave
Now we want to know where the car should be, the osition of the car is:

Where x_A is the position of point A. Therefore, the car will be at:
<u><em>x(T/2) = x_A + v_0 (T/2) + (1/8)aT^2</em></u>
Answer:
0.17724 m/s²
Explanation:
D = Diameter of roll = Length of wing = 11 m
T = Time it takes to complete the circle = 35 s
Velocity

Acceleration

Acceleration of the tip of the plane is 0.17724 m/s²
Answer:
Final speed of the train is 7.5 m/s
Explanation:
It is given that,
Uniform acceleration of the train is, a = 1.5 m/s²
It starts from rest and travels for 5.0 s. We have to find the final velocity of the train. By using first equation of motion as :

Here, train starts from rest so, u = 0
v = 7.5 m/s
So, the final velocity of the train is 7.5 m/s. Hence, this is the required solution.
Answer:
b. a lens does not focus all colors of light to the same place.
Explanation:
Chromatic aberration is a defect of a lens. In this defect, the lens is unable to focus the different wavelengths of the light on a single focal point. It is also known as chromatic distortion and color fringing. It is caused by the dispersion of light while passing through a lens. As a result, the image might become blurred and different colors are observed around its edges. It can be corrected by the use of a combination of converging and diverging lenses.
Hence, the correct option will be:
<u>b. a lens does not focus all colors of light to the same place.</u>