Answer:
a). V = 3.13*10⁶ m/s
b). T = 1.19*10^-7s
c). K.E = 2.04*10⁵
d). V = 1.02*10⁵V
Explanation:
q = +2e
M = 4.0u
r = 5.94cm = 0.0594m
B = 1.10T
1u = 1.67 * 10^-27kg
M = 4.0 * 1.67*10^-27 = 6.68*10^-27kg
a). Centripetal force = magnetic force
Mv / r = qB
V = qBr / m
V = [(2 * 1.60*10^-19) * 1.10 * 0.0594] / 6.68*10^-27
V = 2.09088 * 10^-20 / 6.68 * 10^-27
V = 3.13*10⁶ m/s
b). Period of revolution.
T = 2Πr / v
T = (2*π*0.0594) / 3.13*10⁶
T = 1.19*10⁻⁷s
c). kinetic energy = ½mv²
K.E = ½ * 6.68*10^-27 * (3.13*10⁶)²
K.E = 3.27*10^-14J
1ev = 1.60*10^-19J
xeV = 3.27*10^-14J
X = 2.04*10⁵eV
K.E = 2.04*10⁵eV
d). K.E = qV
V = K / q
V = 2.04*10⁵ / (2eV).....2e-
V = 1.02*10⁵V
Answer:
A., B., and C.
Explanation:
An Ohmic material is a material that obeys Ohm's Law, V = IR.
In contrast, a non-Ohmic material is one that does not obey Ohm's law.
Ohm's law states that the voltage across an electrical object is proportional to the current flowing through it, with the constant of proportionality being Resistance, R (in Ohm's).
The only Non-Ohmic material is the semiconductor, as semiconductors do not obey Ohm's law.
Answer:
Explanation:
Given
mass of First Block 
Temperature 
mass of second block 
Temperature 
Heat capacity of aluminium c=899 J/kg-K
Final Temperature acquired by both blocks at steady state
Heat loss first block =Heat gain by second block




In a mixture, there will be a solute and solvent. The hydrogen and oxygen are still two different atoms that just mixed together. But in a compound, the hydrogen and oxygen have a bond, making a new and bigger molecule. A mixture can easily be separated by physical means but a compound isn't.
Answer:
0.767m
Explanation:
We are given that the time interval between each droplet is equal.
We are also given that the fourth drop is just dripping from the shower when the first hits the floor.
If they fall at the same time interval and we know that the distance between the shower head and floor are the same, they must therefore fall at the same velocity.
The distance between each drop has to be the same given that they fall at equal time intervals.
Let this distance be x.
We can then partition the entire height of the system into three parts (as shown in the diagram).
Hence, we can say that:
x + x + x = 2.3m
3x = 2.3m
=> x = 2.3/3 = 0.767m
Therefore, at the time the first drop hits the floor, the third drop is only 0.767 m below the shower head.