Explanation:
You walk 53m to the north, then you turn 60° to your right and walk another 45m. Determine the direction of your displacement vector. Express your answer as an angle relative to east
Answer:
B.The force of friction between the block and surface will decrease.
Explanation:
The force of friction is given by

where
is the coefficient of friction and
is the normal force.
When the student pulls on the block with force
at an angle
, the normal force on the block becomes

and hence the frictional force becomes
.
Now, as we increase
,
increases which as a result decreases the normal force
, which also means the frictional force decreases; Hence choice B stands true.
<em>P.S: Choice D is tempting but incorrect since the weight </em>
<em> is independent of the external forces on the block. </em>
Answer:
The International Astronomical Union (IAU) has accepted 88 constellations in the sky.
Explanation:
Constellations has been used since the beginnings of civilizations and each one of them named them as they considered appropiate. It means Greeks' constellations were different than the ones described by Chinese, so it was necessary to gather all these constellations and make a great record with all of them, but there was a problem: Some constellations from different civilizations overlaped because they shared the same stars. There was necessary to put some order on this and that is when in 1922 the International Astronomical Union (IAU) defned a set of 88 moderm constellations that would become the international standard to look at the night sky. Each one of them is unique and does not share stars with the other constellations.
Answer:
1. Density = 1200[kg/m^3]; 2. Volume= 0.005775[m^3], mass= 15.59[kg]
Explanation:
1. We know that the density is defined by the following expression.
![Density = \frac{mass}{volume} \\where:\\mass=90[kg]\\volume=0.075[m^{3} ]\\density=\frac{90}{0.075} \\density=1200[\frac{kg}{m^{3} }]](https://tex.z-dn.net/?f=Density%20%3D%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%5C%5Cwhere%3A%5C%5Cmass%3D90%5Bkg%5D%5C%5Cvolume%3D0.075%5Bm%5E%7B3%7D%20%5D%5C%5Cdensity%3D%5Cfrac%7B90%7D%7B0.075%7D%20%5C%5Cdensity%3D1200%5B%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%20%7D%5D)
2. First we need to convert the units to meters.
wide = 35[cm] = 35/100 = 0.35[m]
long = 11 [dm] = 11 decimeters = 11/10 = 1.1[m]
Thick = 15[mm] = 15/1000 = 0.015[m]
Now we can find the density using the expression for the density.
![density= \frac{mass}{volume} \\where:\\volume = wide*long*thick\\volume=0.35*1.1*0.015 = 0.005775[m^3]\\\\mass= density*volume = 2700*0.005775 = 15.59[kg]](https://tex.z-dn.net/?f=density%3D%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%5C%5Cwhere%3A%5C%5Cvolume%20%3D%20wide%2Along%2Athick%5C%5Cvolume%3D0.35%2A1.1%2A0.015%20%3D%200.005775%5Bm%5E3%5D%5C%5C%5C%5Cmass%3D%20density%2Avolume%20%3D%202700%2A0.005775%20%3D%2015.59%5Bkg%5D)
Answer: To increase the rigidity of the system you could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original experiment.
Explanation:
When a rule is displaced from its vertical position, it oscillates back and forth because of the restoring force opposing the displacement. That is, when the rule is on the left there is a force to the right.
By holding a ruler with one hand and deforming it with the other a force is generated in the opposite direction which is known as the restoring force. The restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. The momentum gained causes the ruler to move to the right leading to opposite deformation. This moves the ruler again to the left. The whole process is repeated until dissipative forces reduce the motion causing the ruler to come to rest.
The relationship between restoring force and displacement was described by Hooke's law. This states that displacement or deformation is directly proportional to the deforming force applied.
F= -kx, where,
F= restoring force
x= displacement or deformation
k= constant related to the rigidity of the system.
Therefore, the larger the force constant, the greater the restoring force, and the stiffer the system.