Answer:
The minimum coefficient of friction required is 0.35.
Explanation:
The minimum coefficient of friction required to keep the crate from sliding can be found as follows:


Where:
μ: is the coefficient of friction
m: is the mass of the crate
g: is the gravity
a: is the acceleration of the truck
The acceleration of the truck can be found by using the following equation:


Where:
d: is the distance traveled = 46.1 m
: is the final speed of the truck = 0 (it stops)
: is the initial speed of the truck = 17.9 m/s
If we take the reference system on the crate, the force will be positive since the crate will feel the movement in the positive direction.

Therefore, the minimum coefficient of friction required is 0.35.
I hope it helps you!
The best answer, I think, is D. The sequence of the stars from the greatest density to the least density is as follows:
<span>
neutron star
</span>white dwarf
main sequence star
giant
<span>
The neutron star is the smallest among them however has the greatest density while the giant has the largest size but has the least density.</span>
<span>computing or networking is a distributed application architecture that partitions tasks or work loads between peers. Peers are equally privileged, equipotent participants in the application. They are said to form a peer-to-peer network of nodes.</span>
The earth is revolving around the sun and when the seasons change the earth tilts at a different angle and it changes your perspective on the constellations<span />
Answer: mechanical efficieny.
Efficieny is also expressend as percent. The formula for mechanical efficiency as percent is the ratio work output to wor input times 100.
The ideal mechanical efficiency for a machine would be 1 or 100% which means that all the input work is converted into output work. But this is just an idealization as the friction and other losses of energy make it imposible to reach 100% efficiency in reality, so the mechanical efficiency of real machinces is less than 100% or 1.