CH4+(x)O2=CO2 +(Y)H2O
C=1 +H=4 +O=? = C=1 +O=2+? +H=?
H=4>>Y=2
C=1 +H=4 +O=? = C=1 +O=(2+2) +H=4
C=1 +H=4 +O=4 = C=1 +O=4 +H=4
O=4>>X=2
CH4+(2)O2 =CO2 +(2)H2O
Answer:

Explanation:
Hello!
In this case, considering that the Gay-Lussac's law allows us to relate the temperature-pressure problems as directly proportional relationships:

Thus, for the initial pressure and temperature in kelvins the final temperature in kelvins, we compute the final pressure as:

Best regards!
Answer:
See explanation
Explanation:
Extraction has to do with the separation of the components of a mixture by dissolving the mixture in a set up involving two phases. One phase is the aqueous phase (beneath) while the other is the organic phase (on top). The solvents used for the two phases must not be miscible. Water commonly is used for the aqueous phase.
Ethanol is an important solvent in chemistry but the solvent is miscible with water in all proportions. As a result of this, ethanol is a poor solvent for carrying out extraction.