I was hoping that some choices would be given to choose from. As there are no choices given, so i am answering the question based on my knowledge and hope that it comes to your help. Calcium hydroxide is a good example of Arrhenius base. An Arrhenius base is actually a substance that releases a hydroxyl ion in water.
<span>283.89 g/mol is the molar mass of tetraphosphorus decoxide</span>
THE ANSWER IS OPTION B.
B;SOIL FROM EROSION FILLS UP A POND
HOPE THIS HELP
![\small \color{gold}{ \underline{ \tt \bold \pink{ \: by:MissS3xy}}}](https://tex.z-dn.net/?f=%20%5Csmall%20%5Ccolor%7Bgold%7D%7B%20%5Cunderline%7B%20%5Ctt%20%5Cbold%20%5Cpink%7B%20%5C%3A%20by%3AMissS3xy%7D%7D%7D)
Answer:
2.04 x 10²⁴ molecules
Explanation:
Given parameters:
Mass of Be(OH)₂ = 145.5g
To calculate the number of molecules in this mass of Be(OH)₂ we follow the following steps:
>> Calculate the number of moles first using the formula below:
Number of moles = mass/molarmass
Since we have been given the mass, let us derive the molar mass of Be(OH)₂
Atomic mass of Be = 9g
O = 16g
H = 1g
Molar Mass = 9 + 2(16 + 1)
= 9 + 34
= 43g/mol
Number of moles = 145.5/43 = 3.38mol
>>> We know that a mole is the amount of substance that contains Avogadro’s number of particles. The particles can be atoms, molecules, particles etc. Therefore we use the expression below to determine the number of molecules in 3.38mol of Be(OH)₂:
Number of
molecules= number of moles x 6.02 x 10²³
Number of molecules= 3.38 x 6.02 x 10²³
= 20.37 x 10²³ molecules
= 2.04 x 10²⁴ molecules
Answer:
IMISS THE RAGE⁉️⁉️⁉️⁉️⁉️⁉️IMISS THE RAGE⁉️⁉️⁉️⁉️⁉️⁉️IMISS THE RAGE⁉️⁉️⁉️⁉️⁉️⁉️