1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goblinko [34]
2 years ago
13

Architecture reflects multidisciplinary

Engineering
1 answer:
vovangra [49]2 years ago
6 0

Answer:

The architectural profession is multidisciplinary. ... Some of the disciplines which intervene in the design of a building are: architectural composition, structural engineering, architectural technology and energy engineering. Depending on the strategy of designing, one or more disciplines can have priority over others..

Explanation:

Hope it helps you..

Just correct me if I'm Wrong..

But, your welcome in advance..

(╥﹏╥)(ㆁωㆁ)

You might be interested in
1. A thin-walled cylindrical pressure vessel is capped at the end and is subjected to an internal pressure (p). The inside diame
Vesna [10]
I DONT KNOW OKAY UGHHH
6 0
3 years ago
A large heat pump should upgrade 5 MW of heat at 85°C to be delivered as heat at 150°C. Suppose the actual heat pump has a COP o
AysviL [449]

Answer:

W=2 MW

Explanation:

Given that

COP= 2.5

Heat extracted from 85°C  

Qa= 5 MW

Lets heat supplied at 150°C   = Qr

The power input to heat pump = W

From first law of thermodynamics

Qr= Qa+ W

We know that COP of heat pump given as

COP=\dfrac{Qr}{W}

2.5=\dfrac{5}{W}

2.5=\dfrac{5}{W}

W=2 MW

For Carnot heat pump

COP=\dfrac{T_2}{T_2-T_1}

2.5=\dfrac{T_2}{T_2-(273+85)}

2.5 T₂ -  895= T₂

T₂=596.66 K

T₂=323.6 °C

7 0
3 years ago
Compute the solution to x + 2x + 2x = 0 for Xo = 0 mm, vo = 1 mm/s and write down the closed-form expression for the response.
Nutka1998 [239]

Answer:

β = \frac{c}{\sqrt{km} } =  0.7071 ≈ 1 ( damping condition )

closed-form expression for the response is attached below

Explanation:

Given :  x + 2x + 2x = 0   for Xo = 0 mm and Vo = 1 mm/s

computing a solution :

M = 1,

c = 2,

k = 2,

Wn = \sqrt{\frac{k}{m} }  = \sqrt{2}  

next we determine the damping condition using the damping formula

β = \frac{c}{\sqrt{km} } =  0.7071 ≈ 1

from the condition above it can be said that the damping condition indicates underdamping

attached below is the closed form expression for the response

6 0
2 years ago
1. (5 pts) An adiabatic steam turbine operating reversibly in a powerplant receives 5 kg/s steam at 3000 kPa, 500 °C. Twenty per
KiRa [710]

Answer:

temperature of first extraction 330.8°C

temperature of second extraction 140.8°C

power output=3168Kw

Explanation:

Hello!

To solve this problem we must use the following steps.

1. We will call 1 the water vapor inlet, 2 the first extraction at 100kPa and 3 the second extraction at 200kPa

2. We use the continuity equation that states that the mass flow that enters must equal the two mass flows that leave

m1=m2+m3

As the problem says, 20% of the flow represents the first extraction for which 5 * 20% = 1kg / s

solving

5=1+m3

m3=4kg/s

3.

we find the enthalpies and temeperatures in each of the states, using thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties

4.we find the enthalpy and entropy of state 1 using pressure and temperature

h1=Enthalpy(Water;T=T1;P=P1)

h1=3457KJ/kg

s1=Entropy(Water;T=T1;P=P1)

s1=7.234KJ/kg

4.

remembering that it is a reversible process we find the enthalpy and the temperature in the first extraction with the pressure 1000 kPa and the entropy of state 1

h2=Enthalpy(Water;s=s1;P=P2)

h2=3116KJ/kg

T2=Temperature(Water;P=P2;s=s1)

T2=330.8°C

5.we find the enthalpy and the temperature in the second extraction with the pressure 200 kPav y the entropy of state 1

h3=Enthalpy(Water;s=s1;P=P3)

h3=2750KJ/kg

T3=Temperature(Water;P=P3;s=s1)

T3=140.8°C

6.

Finally, to find the power of the turbine, we must use the first law of thermodynamics that states that the energy that enters is the same that must come out.

For this case, the turbine uses a mass flow of 5kg / s until the first extraction, and then uses a mass flow of 4kg / s for the second extraction, taking into account the above we infer the following equation

W=m1(h1-h2)+m3(h2-h3)

W=5(3457-3116)+4(3116-2750)=3168Kw

7 0
2 years ago
Sarah needs to create an architectural drawing for a museum building with an inclined surface. Which presentation view will be t
prohojiy [21]

Answer: auxiliary

Explanation: got it right

7 0
2 years ago
Other questions:
  • To operate a vehicle in Florida, you must
    10·2 answers
  • . A roadway is being designed capable of allowing 70 mph vehicle speed. The superelevation around one curve is 0.05 inches per i
    15·1 answer
  • Someone claims that the shear stress at the center of a circular pipe during fully developed laminar flow is zero. Do you agree
    12·1 answer
  • Who can work on a fixed ladder that extends more than 24 feet?
    11·1 answer
  • In your opinion, what is the external opportunity cost of a successful biking company in a community
    7·1 answer
  • If i build thing a and thing a builds thing b did i build thing b
    5·2 answers
  • Does an electronic clock use electrical energy?​
    10·2 answers
  • CNG is a readily available alternative to _________.
    9·1 answer
  • 10 properties of metals?<br> ​
    10·2 answers
  • How many different powerball combinations are there
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!