1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnZ [28]
3 years ago
10

Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr

opic processes. Consider such a cycle when the compression ratio is 8, P1 = 95 kPa, T1 = 15°C, and the maximum cycle temperature is 900°C. Determine the heat transferred to and rejected from this cycle, as well as the cycle’s thermal efficiency. Use constant specific heats at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg·K, cv = 0.718 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4.
Engineering
1 answer:
omeli [17]3 years ago
6 0

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

You might be interested in
As the junior engineer at the Mesabi Range Hydraulic Engineering Company located in Ely, Minnesota, you have been tasked with de
katen-ka-za [31]

yes it will

Explanation:

5 0
3 years ago
The thermal efficiency of two reversible power cycles operating between the same thermal reservoirs will a)- depend on the mecha
mestny [16]
C ,, i’m pretty sure .
4 0
3 years ago
The mechanical energy of an object is a combination of its potential energy and its
saveliy_v [14]

The mechanical energy of an object is a combination of its potential energy and its <em><u>kinetic</u></em><em><u> </u></em><em><u>energy</u></em><em><u>.</u></em>

6 0
2 years ago
Why doesn’t the servant kill the child oedipus as he was ordered to do
Anni [7]
The Servant does not kill the child Oedipus as he was ordered to do because "He pitied the child" based on the Oedipus Rex story. The servant was ordered to kill the child because of the prophecy that predicted King Laius' death. The king already had attempted to hurt Oedipus by piercing Oedipus's ankle. However, the servant did not finish the job and he rather saved the baby Oedipus.
6 0
2 years ago
Do you get a better performance using premier gasoline (Octane number 93) for your compact car?
topjm [15]

Answer:

Yes

Explanation:

As we know that octane number resist the engine from knocking.If knocking can prevent that automatically the performance of engine will increases.If octane number is 100 then it means that knocking tendency in the engine is zero.So higher the octane number better will the performance of the engine.

Generally octane number is 87 but for premier gasoline is 92 or 93.

So we can say that if octane number is  93 then car will give better performance

6 0
3 years ago
Other questions:
  • Suppose you have a 9.00 V battery, a 2.00 μF capacitor, and a 7.40 μF capacitor. (a) Find the charge and energy stored if the ca
    13·2 answers
  • What will happen in a wire drawing operation when the cross-sectional area has a reduction of 60% in a single pass?
    10·1 answer
  • There are two piston-cylinder systems that each contain 1 kg of an idea gas at a pressure of 300 kPa and temperature of 350 K. T
    8·1 answer
  • What will the following segment of code output? score = 95; if (score &gt; 95) cout &lt;&lt; "Congratulations!\n"; cout &lt;&lt;
    9·1 answer
  • A 15.00 mL sample of a solution of H2SO4 of unknown concentration was titrated with 0.3200M NaOH. the titration required 21.30 m
    12·1 answer
  • Who is the best musician in Nigeria<br>​
    11·2 answers
  • When will the entropy value of the universe attained its maximum value?
    13·1 answer
  • - If you overload the rear portion of you vehicle &amp; it's raining out, your car could easily:
    14·1 answer
  • The most important rating for batteries is the what
    11·1 answer
  • The majority of adults now own smartphones or tablets, and most of them say they use them in part to get the news. From 2004 to
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!