1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnZ [28]
3 years ago
10

Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr

opic processes. Consider such a cycle when the compression ratio is 8, P1 = 95 kPa, T1 = 15°C, and the maximum cycle temperature is 900°C. Determine the heat transferred to and rejected from this cycle, as well as the cycle’s thermal efficiency. Use constant specific heats at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg·K, cv = 0.718 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4.
Engineering
1 answer:
omeli [17]3 years ago
6 0

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

You might be interested in
What is an electrical output device
tester [92]

Answer:

heyoo!

a printer, camera, computerr

hope this helpss>3

Explanation:

7 0
3 years ago
Read 2 more answers
A tension test was conducted on a specimen of AISI 1020 hot rolled steel having an initial diameter of 9.11 mm. The load at the
Ad libitum [116K]

Answer:

gg

Explanation:

gg

5 0
3 years ago
Which of these actions can be taken to minimize number of victims or prevent injury? (check all that apply) A. Hire good lawyers
Alenkasestr [34]

Answer:

The options that apply are:

B, C and D.

Explanation:

There have been a number of accidents all over the world resulting from Acts of God, professional negligence amongst other things.

These may not be avoided completely but the actions above speak to how they can be mitigated or reduced.

Cheers!

5 0
3 years ago
Consider an adiabatic throttling valve with water entering at pressure of 1.5 MPa, a temperature of 150°C and a velocity of 4.5
Marta_Voda [28]

Answer:

So the exit velocity of water is 4.5 m/s

Explanation:

Given that

Water entering pressure = 1.5 MPa

Temperature = 150°C

Velocity = 4.5 m/s

From first law of thermodynamics for open system

h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}+W

Here given that valve is adiabatic so Q= 0

In valve W= 0

Wen also also know that throttling process is an constant enthaply process so

h_1=h_2

h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}+W

h_1+\dfrac{V_1^2}{2}+0=h_1+\dfrac{V_2^2}{2}+0

So from above equation we can say that

V_2=V_1

So the exit velocity of water is 4.5 m/s

5 0
3 years ago
I really need help on this!
Dafna1 [17]
C: benchmark because I have done this before
8 0
3 years ago
Read 2 more answers
Other questions:
  • A part made from annealed AISI 1018 steel undergoes a 20 percent cold-work operation. Obtain the yield strength and ultimate str
    10·1 answer
  • If 20 kg of iron, initially at 12 °C, is added to 30 kg of water, initially at 90 °C, what would be the final temperature of the
    6·1 answer
  • A 100 kmol/h stream that is 97 mole% carbon tetrachloride (CCL) and 3% carbon disulfide (CS2) is to be recovered from the bottom
    7·1 answer
  • The minimum safe working distance from exposed electrical conductors
    13·1 answer
  • Need some help with these plz
    6·1 answer
  • My t!t$ feel sore and heavyy
    13·1 answer
  • 4.68 Steam enters a turbine in a vapor power plant operating at steady state at 560°C, 80 bar, and exits as a saturated vapor at
    15·1 answer
  • Which statements describe the motion of car A and car B? Check all that apply. Car A and car B are both moving toward the origin
    7·1 answer
  • 9. Calculate the total resistance and current in a parallel cir-
    11·1 answer
  • If a 110-volt appliance requires 20 amps, what is the total power consumed?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!