1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnZ [28]
3 years ago
10

Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr

opic processes. Consider such a cycle when the compression ratio is 8, P1 = 95 kPa, T1 = 15°C, and the maximum cycle temperature is 900°C. Determine the heat transferred to and rejected from this cycle, as well as the cycle’s thermal efficiency. Use constant specific heats at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg·K, cv = 0.718 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4.
Engineering
1 answer:
omeli [17]3 years ago
6 0

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

You might be interested in
Consider two Carnot heat engines operating in series. The first engine receives heat from the reservoir at 1400 K and rejects th
Aleksandr-060686 [28]

Answer:

The temperature T= 648.07k

Explanation:

T1=input temperature of the first heat engine =1400k

T=output temperature of the first heat engine and input temperature of the second heat engine= unknown

T3=output temperature of the second heat engine=300k

but carnot efficiency of heat engine =1 - \frac{Tl}{Th} \\

where Th =temperature at which the heat enters the engine

Tl is the  temperature of the environment

since both engines have the same thermal capacities <em>n_{th} </em> therefore n_{th} =n_{th1} =n_{th2}\\n_{th }=1-\frac{T1}{T}=1-\frac{T}{T3}\\ \\= 1-\frac{1400}{T}=1-\frac{T}{300}\\

We have now that

\frac{-1400}{T}+\frac{T}{300}=0\\

multiplying through by T

-1400 + \frac{T^{2} }{300}=0\\

multiplying through by 300

-420000+ T^{2} =0\\T^2 =420000\\\sqrt{T2}=\sqrt{420000}  \\T=648.07k

The temperature T= 648.07k

5 0
3 years ago
Q1: You have to select an idea developing an application like web/mobile or industrial, it should be based on innovative idea, n
elena55 [62]

Answer:

Creating an app is both an expression of our self and a reflection of what we see is missing in the world. We find ourselves digging deep into who we are, what we would enjoy working on, and what needs still need to be fulfilled. Generating an app idea for the first time can be extremely daunting. Especially with an endless amount of possibilities such as building a church app.

The uncertainty has always spawned a certain fear inside creators. The fear of creating something no one will enjoy. Spending hundreds of dollars and hours building something which might not bring back any real tangible results. The fear of losing our investment to a poor concept is daunting but not random. But simple app ideas are actually pretty easy to come by.

Great app idea generation is not a gift given to a selected few, instead, it is a process by which any of us are able to carefully explore step by step methods to find our own solution to any problem. Whether you are a seasoned creator or a novice, we have provided a few recommendations to challenge and aid you as you create your next masterpiece.

if I am right then make me brainliest

6 0
3 years ago
The insulation resistance of a motor operated by an electronic drive is to be tested using a megger. What precaution should you
EleoNora [17]
Use protective gear. Use insulated tools, Wear flame resistant clothing, safety glasses, and insulation gloves, Remove watches or other jewelry, Stand on an insulation mat. 03. Never connect the insulation tester to energized conductors or energized equipment and always follow the manufacturer's recommendations. When installing new electrical machinery or equipment, testing insulation resistance is important for two reasons. First, it ensures that the insulation is in adequate condition to begin operation. ... The test is accomplished by applying DC voltage through the de-energized circuit using an insulation tester. Insulation resistance should be approximately one megohm for each 1,000 volts of operating voltage, with a minimum value of one megohm. For example, a motor rated at 2,400 volts should have a minimum insulation resistance of 2.4 megohms.
4 0
3 years ago
Describe the placement of the views in a multi view drawing
Marianna [84]

Answer:

like a mountain place thanks #careonlearning

8 0
2 years ago
To be able to solve problems involving force, moment, velocity, and time by applying the principle of impulse and momentum to ri
coldgirl [10]

Answer:

see explaination

Explanation:

Please kindly check attachment for the step by step solution of the given problem.

The attached files has the solved problem.

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the entropy of a closed system in which 25 distinguishable grains of sand are distributed among 1000 distinguishable equ
    5·2 answers
  • An incompressible fluid flows along a 0.20-m-diameter pipe with a uniform velocity of 3 m/s. If the pressure drop between the up
    15·1 answer
  • Determine the total condensation rate of water vapor onto the front surface of a vertical plate that is 10 mm high and 1 m in th
    8·2 answers
  • Suppose that we have a 1000 pF parallel-plate capacitor with air dielectric charged to 1000 V. The capacitors terminals are open
    13·1 answer
  • The ultimate BOD of a river just below a sewage outfall is 50.0 mg/L, and the oxygen deficit at the outfall D0 is 2.0 mg/L. The
    6·1 answer
  • C programming fundamentals for everyone​
    13·1 answer
  • Draw a sketch of the following situations identifying the system or control volume, and the boundary of the system or the contro
    10·1 answer
  • IM JI Suneou uo mm
    12·1 answer
  • Two previously undeformed rod-shaped specimens of copper are to be plastically deformed by reducing their cross-sectional areas.
    14·1 answer
  • How can you contribute to achieved the mission of NSTP during pandemic in your society?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!